Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: Mark Papich x
  • Pharmacology x
  • Refine by Access: All Content x
Clear All Modify Search
Author:

Abstract

Objective—To determine the pharmacokinetics of ciprofloxacin in dogs, including oral absorption following administration of generic ciprofloxacin tablets.

Animals—6 healthy Beagles.

Procedures—In a crossover study design, ciprofloxacin was administered as a generic tablet (250 mg, PO; mean dose, 23 mg/kg) and solution (10 mg/kg, IV) to 6 dogs. In a separate experiment, 4 of the dogs received ciprofloxacin solution (10 mg/mL) PO via stomach tube (total dose, 250 mg). Blood samples were collected before (time 0) and for 24 hours after each dose. Plasma concentrations were analyzed with high-pressure liquid chromatography. Pharmacokinetic analysis was performed by means of compartmental modeling.

Results—When ciprofloxacin was administered as tablets PO, peak plasma concentration was 4.4 μg/mL (coefficient of variation [CV], 55.9%), terminal half-life (t1/2) was 2.6 hours (CV, 10.8%), area under the time-concentration curve was 22.5 μg•h/mL (CV, 62.3%), and systemic absorption was 58.4% (CV, 45.4%). For the dose administered IV, t1/2 was 3.7 hours (CV, 52.3%), clearance was 0.588 L/kg/h (CV, 33.9%), and volume of distribution was 2.39 L/kg (CV, 23.7%). After PO administration as a solution versus IV administration, plasma concentrations were more uniform and consistent among dogs, with absorption of 71% (CV, 7.3%), t1/2 of 3.1 hours (CV, 18.6%), and peak plasma concentration of 4.67 μg/mL (CV, 17.6%).

Conclusions and Clinical Relevance—Inconsistent oral absorption of ciprofloxacin in some dogs may be formulation dependent and affected by tablet dissolution in the small intestine. Because of the wide range in oral absorption of tablets, the dose needed to reach the pharmacokinetic-pharmacodynamic target concentration in this study ranged from 12 to 52 mg/kg (CV, 102%), with a mean dose of 25 mg/kg, once daily, for bacteria with a minimum inhibitory concentration ≤ 0.25 μg/mL.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of tramadol, the active metabolite O-desmethyltrcamadol, and the metabolites N-desmethyltramadol and N,O-didesmethyltramadol after oral tramadol administration and to determine the antinociceptive effects of the drug in Greyhounds.

Animals—6 healthy 2- to 3-year-old Greyhounds (3 male and 3 female), weighing 25.5 to 41.1 kg.

Procedures—A mean dose of 9.9 mg of tramadol HCl/kg was administered PO as whole tablets. Blood samples were obtained prior to and at various points after administration to measure plasma concentrations of tramadol and its metabolites via liquid chromatography with mass spectrometry. Antinociceptive effects were determined by measurement of pain-pressure thresholds with a von Frey device.

Results—Tramadol was well tolerated, and a significant increase in pain-pressure thresholds was evident 5 and 6 hours after administration. The mean maximum plasma concentrations of tramadol, O-desmethyltramadol, N-desmethyltramadol, and N,O-didesmethyltramadol were 215.7, 5.7, 379.1, and 2372 ng/mL, respectively. The mean area-under-the-curve values for the compounds were 592, 16, 1,536, and 1,013 h·ng/mL, respectively. The terminal half-lives of the compounds were 1.1, 1.4, 2.3, and 3.6 hours, respectively. Tramadol was detected in urine 5 days, but not 7 days, after administration.

Conclusions and Clinical Relevance—Oral tramadol administration yielded antinociceptive effects in Greyhounds, but plasma concentrations of tramadol and O-desmethyltramadol were lower than expected. Compared with the approved dose (100 mg, PO) in humans, a mean dose of 9.9 mg/kg, PO resulted in similar tramadol but lower O-desmethyltramadol plasma concentrations in Greyhounds.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine pharmacokinetics of posaconazole in dogs given an IV solution, oral suspension, and delayed-release tablet.

ANIMALS 6 healthy dogs.

PROCEDURES Posaconazole was administered IV (3 mg/kg) and as an oral suspension (6 mg/kg) to dogs in a randomized crossover study. Blood samples were collected before (time 0) and for 48 hours after each dose. In an additional experiment, 5 of the dogs received posaconazole delayed-release tablets (mean dose, 6.9 mg/kg); blood samples were collected for 96 hours. Plasma concentrations were analyzed with high-performance liquid chromatography.

RESULTS IV solution terminal half-life (t1/2) was 29 hours (coefficient of variation [CV], 23%). Clearance and volume of distribution were 78 mL/h/kg (CV, 59%) and 3.3 L/kg (CV, 38%), respectively. Oral suspension t1/2 was 24 hours (CV, 42%). Maximum plasma concentration (Cmax) of 0.42 μg/mL (CV, 56%) was obtained at 7.7 hours (CV, 92%). Mean bioavailability was 26% (range, 7.8% to 160%). Delayed-release tablet t1/2 was 42 hours (CV, 25%), with a Cmax of 1.8 μg/mL (CV, 44%) at 9.5 hours (CV, 85%). Mean bioavailability of tablets was 159% (range, 85% to 500%). Bioavailability of delayed-release tablets was 497% (range, 140% to 1,800%) relative to that of the oral suspension.

CONCLUSIONS AND CLINICAL RELEVANCE Absorption of posaconazole oral suspension in dogs was variable. Absorption of the delayed-release tablets was greater than absorption of the oral suspension, with a longer t1/2 that may favor its clinical use in dogs. Administration of delayed-release tablets at a dosage of 5 mg/kg every other day can be considered for future studies.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution.

Animals—6 adult horses.

Procedures—Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed.

Results—Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 ± 18.41%. The elimination half-life after a single orally administered dose was 13.11 ± 2.85 hours, and the maximum plasma concentration was 2.43 ± 0.4 μg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study.

Conclusions and Clinical Relevance—Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration ≤ 1 μg/mL. Because of the possible nonlinearity of this drug as well as the potential for accumulation, chronic dosing studies and clinical trials are needed to determine the appropriate dosing regimen for voriconazole in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses.

Animals—6 adult horses.

Procedure—The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions.

Results—Feeding decreased drug absorption. After multiple doses, mean ± SD time to maximum concentration was 1.63 ± 1.36 hours, maximum concentration was 1.74 ± 0.3 μg/mL, and elimination half-life was 12.07 ± 3.17 hours. Plasma protein binding was 81.76 ± 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 ± 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia.

Conclusions and Clinical Relevance—Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration ≤ 0.25 μg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 μg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To develop a high-performance liquid chromatography (HPLC) assay for cetirizine in feline plasma and determine the pharmacokinetics of cetirizine in healthy cats after oral administration of a single dose (5 mg) of cetirizine dihydrochloride.

Animals—9 healthy cats.

Procedures—Heparinized blood samples were collected prior to and 0.5, 1, 2, 4, 6, 8, 10, and 24 hours after oral administration of 5 mg of cetirizine dihydrochloride to each cat (dosage range, 0.6 to 1.4 mg/kg). Plasma was harvested and analyzed by reverse-phase HPLC. Plasma concentrations of cetirizine were analyzed with a compartmental pharmacokinetic model. Protein binding was measured by ultrafiltration with a microcentrifugation system.

Results—No adverse effects were detected after drug administration in the cats. Mean ± SD terminal half-life was 10.06 ± 4.05 hours, and mean peak plasma concentration was 3.30 ± 1.55 μg/mL. Mean volume of distribution and clearance (per fraction absorbed) were 0.24 ± 0.09 L/kg and 0.30 ± 0.09 mL/kg/min, respectively. Mean plasma concentrations were approximately 2.0 μg/mL or higher for 10 hours and were maintained at > 0.72 μg/mL for 24 hours. Protein binding was approximately 88%.

Conclusions and Clinical Relevance—A single dose of cetirizine dihydrochloride (approx 1 mg/kg, which corresponded to approximately 0.87 mg of cetirizine base/kg) was administered orally to cats. It was tolerated well and maintained plasma concentrations higher than those considered effective in humans for 24 hours after dosing. The half-life of cetirizine in cats is compatible with once-daily dosing, and the extent of protein binding is high.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effect of protein binding on the pharmacokinetics and distribution from plasma to interstitial fluid (ISF) of cephalexin and cefpodoxime proxetil in dogs.

Animals—6 healthy dogs.

Procedures—In a crossover study design, 25 mg of cephalexin/kg or 9.6 mg of cefpodoxime/kg was administered orally. Blood samples were collected before (time 0) and 0.33, 0.66, 1, 2, 3, 4, 6, 8, 10, 12, 16, and 24 hours after treatment. An ultrafiltration device was used in vivo to collect ISF at 0, 2, 4, 6, 8, 10, 12, 16, and 24 hours. Plasma and ISF concentrations were analyzed with high-pressure liquid chromatography. Plasma protein binding was measured by use of a microcentrifugation technique.

Results—Mean plasma protein binding for cefpodoxime and cephalexin was 82.6% and 20.8%, respectively. Mean ± SD values for cephalexin in plasma were determined for peak plasma concentration (Cmax, 31.5 ± 11.5 μg/mL), area under the time-concentration curve (AUC, 155.6 ± 29.5 μg•h/mL), and terminal half-life (T½, 4.7 ± 1.2 hours); corresponding values in ISF were 16.3 ± 5.8 μg/mL, 878 ± 21.0 μg•h/mL, and 3.2 ± 0.6 hours, respectively. Mean ± SD values for cefpodoxime in plasma were 33.0 ± 6.9 μg/mL (Cmax), 282.8 ± 44.0 μg•h/mL (AUC), and 5.7 ± 0.9 hours (T1/2); corresponding values in ISF were 4.3 ± 2.0 μg/mL, 575 ± 174 μg•h/mL, and 10.4 ± 3.3 hours, respectively.

Conclusions and Clinical Relevance—Tissue concentration of protein-unbound cefpodoxime was similar to that of the protein-unbound plasma concentration. Cefpodoxime remained in tissues longer than did cephalexin.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the pharmacokinetics of levofloxacin following oral administration of a generic levofloxacin tablet and IV administration to dogs and whether the achieved plasma levofloxacin concentration would be sufficient to treat susceptible bacterial infections.

ANIMALS

6 healthy adult Beagles.

PROCEDURES

Levofloxacin was administered orally as a generic 250-mg tablet (mean dose, 23.7 mg/kg) or IV as a solution (15 mg/kg) to each dog in a crossover study design, with treatments separated by a minimum 2-day washout period. Blood samples were collected at various points for measurement of plasma levofloxacin concentration via high-pressure liquid chromatography. Pharmacokinetic analysis was performed with compartmental modeling.

RESULTS

After oral administration of the levofloxacin tablet, mean (coefficient of variation) peak plasma concentration was 15.5 μg/mL (23.8%), mean elimination half-life was 5.84 hours (20.0%), and mean bioavailability was 104% (29.0%). After IV administration, mean elimination half-life (coefficient of variation) was 6.23 hours (14.7%), systemic clearance was 145.0 mL/kg/h (22.2%), and volume of distribution was 1.19 L/kg (17.1%).

CONCLUSIONS AND CLINICAL RELEVANCE

In these dogs, levofloxacin was well absorbed when administered orally, and a dose of approximately 25 mg/kg was sufficient to reach pharmacokinetic-pharmacodynamic targets for treating infections with susceptible Enterobacteriaceae (ie, ≤ 0.5 μg/mL) or Pseudomonas aeruginosa (ie, ≤ 1 μg/mL) according to clinical breakpoints established by the Clinical and Laboratory Standards Institute.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacodynamic and pharmacokinetic properties of clopidogrel and the metabolite SR 26334 in dogs.

Animals—9 mixed-breed dogs.

Procedures—8 dogs received clopidogrel (mean ± SD 1.13 ± 0.17 mg/kg, PO, q 24 h) for 3 days; 5 of these dogs subsequently received a lower dose of clopidogrel (0.5 ± 0.18 mg/kg, PO, q 24 h) for 3 days. Later, 5 dogs received clopidogrel (1.09 ± 0.12 mg/kg, PO, q 24 h) for 5 days. Blood samples were collected for optical platelet aggregometry, citrated native and platelet mapping thrombelastography (TEG), and measurement of plasma drug concentrations. Impedance aggregometry was performed on samples from 3 dogs in each 3-day treatment group.

Results—ADP-induced platelet aggregation decreased (mean ± SD 93 ± 6% and 80 ± 22% of baseline values, respectively) after 72 hours in dogs in both 3-day treatment groups; duration of effect ranged from > 3 to > 7 days. Platelet mapping TEG and impedance aggregometry yielded similar results. Citrated native TEG was not different among groups. Clopidogrel was not detected in any samples; in dogs given 1.13 ± 0.17 mg/kg, maximum concentration of SR 26334 (mean ± SD, 0.206 ± 0.2 μg/mL) was detected 1 hour after administration.

Conclusions and Clinical Relevance—Clopidogrel inhibited ADP-induced platelet aggregation in healthy dogs and may be a viable antiplatelet agent for use in dogs.

Impact for Human Medicine—Pharmacodynamic effects of clopidogrel in dogs were similar to effects reported in humans; clopidogrel may be useful in studies involving dogs used to investigate human disease.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effects of housing environment on oral absorption of acetaminophen in dogs.

ANIMALS

6 healthy Beagles.

PROCEDURES

Acetaminophen (325 mg, PO; mean dose, 31.1 mg/kg) was administered in a crossover study design with dogs housed in their normal environment or in a cage in an unfamiliar environment. There was a 7-day washout period between phases. Blood samples were collected for 24 hours following acetaminophen administration, and plasma acetaminophen concentrations were determined with high-pressure liquid chromatography.

RESULTS

A 2-compartment model with lag time was the best fit for both phases of the study. None of the primary or secondary pharmacokinetic parameters were significantly different between the 2 housing environments.

CLINICAL RELEVANCE

Findings suggested that in dogs, housing environment (normal environment vs a cage in an unfamiliar environment) did not significantly affect oral absorption and, by extension, gastric emptying of acetaminophen.

Full access
in American Journal of Veterinary Research