Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Lorrie Gaschen DVM x
  • Diagnostic Imaging x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To establish a computed tomography (CT)-angiography protocol and measure the diameters of major arteries in parrots.

Animals—13 Hispaniolan Amazon parrots (Amazona ventralis).

Procedures—16-slice CT scanning was used to measure the apparent diameter of the ascending aorta, abdominal aorta, pulmonary arteries, and brachiocephalic trunk. Before scanning, all birds underwent ECG and echocardiographic assessment and were considered free of detectable cardiovascular diseases. Each bird was anesthetized, and a precontrast helical CT scan was performed. Peak aortic enhancement was established with a test bolus technique via dynamic axial CT scan over a predetermined single slice. An additional bolus of contrast medium was then injected, and a helical CT-angiography scan was performed immediately afterward. Arterial diameter measurements were obtained by 2 observers via various windows before and after injection, and intra- and interobserver agreement was assessed.

Results—Reference limits were determined for arterial diameter measurements before and after contrast medium administration in pulmonary, mediastinal, and manual angiography windows. Ratios of vertebral body diameter to keel length were also calculated. Intraobserver agreement was high (concordance correlation coefficients ≥ 0.95); interobserver agreement was medium to high (intraclass correlation coefficients ≥ 0.65).

Conclusions and Clinical Relevance—CT-angiography was safe and is of potential diagnostic value in parrots. We recommend performing the angiography immediately after IV injection of 3 mL of iohexol/kg. Arterial diameter measurements at the described locations were reliable.

Full access
in American Journal of Veterinary Research


Objective—To evaluate pulsed-wave Doppler spectral parameters as a method for distinguishing between neoplastic and inflammatory peripheral lymphadenopathy in dogs.

Sample Population—40 superficial lymph nodes from 33 dogs with peripheral lymphadenopathy.

Procedures—3 Doppler spectral tracings were recorded from each node. Spectral Doppler analysis including assessment of the resistive index, peak systolic velocity-to-end diastolic velocity (S:D) ratio, diastolic notch velocity-to-peak systolic velocity (N:S) ratio, and end diastolic velocity-to-diastolic notch velocity ratio was performed for each tracing. Several calculation methods were used to determine the Doppler indices for each lymph node. After the ultrasonographic examination, fine needle aspirates or excisional biopsy specimens of the examined lymph nodes were obtained, and lymphadenopathy was classified as either inflammatory or neoplastic (lymphomatous or metastatic) via cytologic or histologic examination. Results of Doppler analysis were compared with cytologic or histopathologic findings.

Results—The Doppler index with the highest diagnostic accuracy was the S:D ratio calculated from the first recorded tracing; a cutoff value of 3.22 yielded sensitivity of 91%, specificity of 100%, and negative predictive value of 89% for detection of neoplasia. Overall diagnostic accuracy was 95%. At a sensitivity of 100%, the most accurate index was the N:S ratio calculated from the first recorded tracing; a cutoff value of 0.45 yielded specificity of 67%, positive predictive value of 81%, and overall diagnostic accuracy of 86.5%.

Conclusions and Clinical Relevance—Results suggested that noninvasive Doppler spectral analysis may be useful in the diagnosis of neoplastic versus inflammatory peripheral lymphadenopathy in dogs.

Full access
in American Journal of Veterinary Research