Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Kyoung-oh Cho x
  • Diagnostic Imaging x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To evaluate acute changes of the liver by use of shear wave elastography (SWE) and CT perfusion after radiofrequency ablation (RFA).

ANIMALS 7 healthy Beagles.

PROCEDURES RFA was performed on the liver (day 0). Stiffness of the ablation lesion, transitional zone, and normal parenchyma were evaluated by use of SWE, and blood flow, blood volume, and arterial liver perfusion of those regions were evaluated by use of CT perfusion on days 0 and 4. All RFA lesions were histologically examined on day 4.

RESULTS Examination of the SWE color-coded map distinctly revealed stiffness of the liver tissue, which increased from the normal parenchyma to the transitional zone and then to the ablation zone. For CT perfusion, blood flow, blood volume, and arterial liver perfusion decreased from the transitional zone to the normal parenchyma and then to the ablation zone. Tissue stiffness and CT perfusion variables did not differ significantly between days 0 and 4. Histologic examination revealed central diffuse necrosis and peripheral hyperemia with infiltration of lymphoid cells and macrophages.

CONCLUSIONS AND CLINICAL RELEVANCE Coagulation necrosis induced a loss of blood perfusion and caused tissue hardening (stiffness) in the ablation zone. Hyperemic and inflammatory changes of the transitional zone resulted in increased blood perfusion. Acute changes in stiffness and perfusion of liver tissue after RFA could be determined by use of SWE and CT perfusion. These results can be used to predict the clinical efficacy of RFA and to support further studies, including those involving hepatic neoplasia.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To assess by use of various diagnostic imaging modalities acute changes in livers of healthy dogs after radiofrequency ablation (RFA) and determine the capability of each imaging modality to monitor ablation lesion changes.

ANIMALS 6 healthy Beagles.

PROCEDURES 12 ablation lesions were created in the liver of the dogs (2 lesions/dog). Ablation lesions were evaluated by use of conventional ultrasonography, strain elastography, and contrast-enhanced ultrasonography immediately after (time 0), 30 to 60 minutes after, and 3 days after RFA, and by use of CT 30 minutes and 3 days after RFA. Three dogs were euthanized shortly after RFA, and the other 3 dogs were euthanized on day 3. Lesion size measured by each imaging modality was compared with necropsy findings.

RESULTS Immediately after RFA, clear margins were more visible with elastography and contrast-enhanced ultrasonography than with conventional ultrasonography, which had acoustic shadowing. On triphasic contrast CT, the ablation zone, which indicated necrosis and hemorrhage, was not enhanced and could be measured. Marked enhancement of the periablation rim was observed during the venous phase and was identified as granulation tissue. Size of the ablation area measured on enhanced CT images was strongly correlated with actual lesion size.

CONCLUSIONS AND CLINICAL RELEVANCE For dogs of this study, CT was the most reliable method for lesion size determination. Although ultrasonographic imaging measurements underestimated lesion size, all modalities could be used to provide additional real-time guidance for RFA procedures of the liver as well as for other RFA procedures.

Full access
in American Journal of Veterinary Research