Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Kim Newkirk x
  • Infectious Disease x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate agents used for delivery of small interfering RNAs (siRNAs) into feline corneal cells, toxicity of the delivery agents, and functionality of anti-feline herpesvirus 1 (FHV-1)–specific siRNA combinations.

Sample—Feline primary corneal cells and 19 six-month-old colony-bred cats.

Procedures—siRNA delivery into corneal cells via various delivery agents was evaluated via flow cytometric detection of labeled siRNAs. Cellular toxicity was evaluated with a proliferation assay. Functionality was tested via quantitative reverse transcriptase PCR assay, plaque assay, and flow cytometry. In vivo safety was evaluated with an ocular scoring method following topical application of delivery agents containing siRNAs into eyes. Corneal biopsy specimens were used to assess safety and uptake of siRNAs into corneal cells.

Results—Use of 3 delivery agents resulted in > 95% transfection of primary corneal cells. Use of a peptide for ocular delivery yielded approximately 82% transfection of cells in vitro. In cultured corneal cells, use of the siRNA combinations resulted in approximately 76% to 89% reduction in FHV-1–specific mRNA, 63% to 67% reduction of FHV-1–specific proteins in treated cells, and 97% to 98% reduction in FHV-1 replication. The agents were nonirritating in eyes, caused no substantial clinical ocular signs, and were nontoxic. Histologically, corneal epithelium and stroma were normal in treated cats. However, none of the agents were effective in delivering siRNAs into the corneal cells in vivo.

Conclusions and Clinical Relevance—The tested anti–FHV-1–specific siRNAs could potentially be used as a treatment for FHV-1 if a successful means of in vivo delivery can be achieved.

Full access
in American Journal of Veterinary Research


Objective—To characterize the L1 gene of papillomaviruses detected in epithelial lesions of cats and to determine the relationship between those L1 gene nucleotide sequences and known L1 gene sequences of human and feline papillomaviruses.

Sample Population—10 tissue samples of epithelial lesions from 8 cats.

Procedures—DNA was extracted from tissue samples. Primers were designed to amplify the L1 gene of papillomaviruses. Amplicons of DNA were sequenced; nucleotide sequences were compared with known L1 gene nucleotide sequences of papillomaviruses and used for phylogenetic analysis.

Results—Tissue samples were obtained from lesions (diagnosed as dysplasia [n = 1], squamous cell carcinoma in situ [3], or squamous cell carcinoma [6]) of the skin (9) and oral mucosa [1]. Two amplicons had 99% homology with the L1 gene nucleotide sequence of human papillomavirus type 38b subtype FA125. Another amplicon had 84% homology with the L1 gene nucleotide sequence of human papillomavirus type 80 and was considered to be a new type of papillomavirus. Phylogenetic tree analysis revealed that these 3 papillomaviruses were grouped into 2 clades that were not similar to the clades of Felis domesticus papillomavirus type 1 or F domesticus papillomavirus type 2 (FdPV2). The remaining 7 amplicons had 98% to 100% homology with the L1 gene nucleotide sequence of FdPV2. Phylogenetic tree analysis revealed that those 7 papillomaviruses were grouped nto a single clade with FdPV2.

Conclusions and Clinical Relevance—Results support the likelihood of transmission of papillomaviruses between humans and cats.

Full access
in American Journal of Veterinary Research