Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Kenneth W. Hinchcliff x
- Physiology x
- Refine by Access: All Content x
Abstract
Objective—To assess changes in muscle glycogen (MG) and triglyceride (MT) concentrations in aerobically conditioned sled dogs during prolonged exercise.
Animals—54 Alaskan sled dogs fed a high-fat diet.
Procedures—48 dogs ran 140-km distances on 4 consecutive days (cumulative distance, up to 560 km); 6 dogs remained as nonexercising control animals. Muscle biopsies were performed immediately after running 140, 420, or 560 km (6 dogs each) and subsequently after feeding and 7 hours of rest. Single muscle biopsies were performed during recovery at 28 hours in 7 dogs that completed 560 km and at 50 and 98 hours in 7 and 6 dogs that completed 510 km, respectively. Tissue samples were analyzed for MG and MT concentrations.
Results—In control dogs, mean ± SD MG and MT concentrations were 375 ± 37 mmol/kg of dry weight (kgDW) and 25.9 ± 10.3 mmol/kgDW, respectively. Compared with control values, MG concentration was lower after dogs completed 140 and 420 km (137 ± 36 mmol/kgDW and 203 ± 30 mmol/kgDW, respectively); MT concentration was lower after dogs completed 140, 420, and 560 km (7.4 ± 5.4 mmol/kgDW; 9.6 ± 6.9 mmol/kgDW, and 6.3 ± 4.9 mmol/kgDW, respectively). Depletion rates during the first run exceeded rates during the final run. Replenishment rates during recovery periods were not different, regardless of distance; only MG concentration at 50 hours was significantly greater than the control value.
Conclusions and Clinical Relevance—Concentration of MG progressively increased in sled dogs undergoing prolonged exercise as a result of attenuated depletion.
Abstract
Objective—To determine whether prolonged exercise by conditioned sled dogs affects urine concentrations of homovanillic acid (a metabolite of dopamine), vanillylmandelic acid (a metabolite of norepinephrine and epinephrine), and cortisol.
Animals—24 conditioned Alaskan sled dogs (2 to 8.5 years old) that were in training for a multiday endurance race.
Procedures—Voided urine samples were collected from 4 groups of dogs (randomly selected from 54 dogs) after no exercise (control group; n = 6 dogs), completion of a 160km run (group A; 3), completion of a 420-km run (group B; 7), and completion of a 560-km run (group C; 6). Urine cortisol concentrations were determined by use of an immunoassay technique; urine vanillylmandelic acid and homovanillic acid concentrations were measured via high-performance liquid chromatography.
Results—Compared with the control group, urine cortisol concentration in groups A, B, and C was significantly different (5.33 × 10−4 ± 2.62 × 10−4 μg/dL vs 1.04 × 10−4 ± 2.31 × 10−5 μg/dL, 8.88 × 10−4 ± 5.49 × 10−4 μg/dL, and 6.31 × 10−4 ± 5.09 × 10−4 μg/dL, respectively). Urine homovanillic acid concentration did not differ among the 4 groups. Vanillylmandelic acid was not detected in any urine samples.
Conclusions and Clinical Relevance—Results indicated that prolonged exercise by sled dogs did not affect urine homovanillic acid concentration but did increase urinary cortisol secretion, which is indicative of adrenocortical stimulation. The apparent lack of vanillylmandelic acid in voided urine samples requires further investigation.