Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Katrien Vanderperren x
  • Diagnostic Imaging x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the detailed computed tomography (CT) anatomy of the metacarpophalangeal (MCP) joint in healthy horses.

Sample Population—10 cadaveric forelimbs from 10 adult horses without orthopedic disease.

Procedures—CT of the MCP joint was performed on 4 forelimbs. In 1 of the limbs, CT was also performed after intra-articular injection of 30 mL of contrast medium (40 mg of iodine/mL). Transverse slices 1-mm thick were obtained, and sagittal and dorsal planes were reformatted with a slice thickness of 2 mm. The CT images were matched with corresponding anatomic slices from 6 additional forelimbs.

Results—The third metacarpal bone, proximal sesamoid bones, and proximal phalanx could be clearly visualized. Common digital extensor tendon; accessory digital extensor tendon; lateral digital extensor tendon; superficial digital flexor tendon (including manica flexoria); deep digital flexor tendon; branches of the suspensory ligament (including its attachment); extensor branches of the suspensory ligament; collateral ligaments; straight, oblique, and cruciate distal sesamoidean ligaments; intersesamoidean ligament; annular ligament; and joint capsule could be seen. Collateral sesamoidean ligaments and short distal sesamoidean ligaments could be localized but not at all times clearly identified, whereas the metacarpointersesamoidean ligament could not be identified. The cartilage of the MCP joint could be assessed on the postcontrast sequence.

Conclusions and Clinical Relevance—CT of the equine MCP joint can be of great value when results of radiography and ultrasonography are inconclusive. Images obtained in this study may serve as reference for CT of the equine MCP joint.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare computed tomography (CT) images of equine tarsi with cross-sectional anatomic slices and evaluate the potential of CT for imaging pathological tarsal changes in horses.

Sample—6 anatomically normal equine cadaveric hind limbs and 4 tarsi with pathological changes.

Procedures—Precontrast CT was performed on 3 equine tarsi; sagittal and dorsal reconstructions were made. In all limbs, postcontrast CT was performed after intra-articular contrast medium injection of the tarsocrural, centrodistal, and tarsometatarsal joints. Images were matched with corresponding anatomic slices. Four tarsi with pathological changes underwent CT examination.

Results—The tibia, talus, calcaneus, and central, fused first and second, third, and fourth tarsal bones were clearly visualized as well as the long digital extensor, superficial digital flexor, lateral digital flexor (with tarsal flexor retinaculum), gastrocnemius, peroneus tertius, and tibialis cranialis tendons and the long plantar ligament. The lateral digital extensor, medial digital flexor, split peroneus tertius, and tibialis cranialis tendons and collateral ligaments could be located but not always clearly identified. Some small tarsal ligaments were identifiable, including plantar, medial, interosseus, and lateral talocalcaneal ligaments; interosseus talocentral, centrodistal, and tarsometatarsal ligaments; proximal and distal plantar ligaments; and talometatarsal ligament. Parts of the articular cartilage could be assessed on postcontrast images. Lesions were detected in the 4 tarsi with pathological changes.

Conclusions and Clinical Relevance—CT of the tarsus is recommended when radiography and ultrasonography are inconclusive and during preoperative planning for treatment of complex fractures. Images from this study can serve as a CT reference, and CT of pathological changes was useful.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To provide a detailed computed tomography (CT) reference of the anatomically normal equine stifle joint.

Sample—16 hind limbs from 8 equine cadavers; no horses had evidence of orthopedic disease of the stifle joints.

Procedures—CT of the stifle joint was performed on 8 hind limbs. In all limbs, CT was also performed after intra-articular injection of 60 mL of contrast material (150 mg of iodine/mL) in the lateral and medial compartments of the femorotibial joint and 80 mL of contrast material in the femoropatellar joint (CT arthrography). Reformatted CT images in the transverse, parasagittal, and dorsal plane were matched with corresponding anatomic slices of the 8 remaining limbs.

Results—The femur, tibia, and patella were clearly visible. The patellar ligaments, common origin of the tendinous portions of the long digital extensor muscle and peroneus tertius muscle, collateral ligaments, tendinous portion of the popliteus muscle, and cranial and caudal cruciate ligaments could also be consistently evaluated. The cruciate ligaments and the meniscotibial ligaments could be completely assessed in the arthrogram sequences. Margins of the meniscofemoral ligament and the lateral and medial femoropatellar ligaments were difficult to visualize on the precontrast and postcontrast images.

Conclusions and Clinical Relevance—CT and CT arthrography were used to accurately identify and characterize osseous and soft tissue structures of the equine stifle joint. This technique may be of value when results from other diagnostic imaging techniques are inconclusive. The images provided will serve as a CT reference for the equine stifle joint.

Full access
in American Journal of Veterinary Research