Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Kathryn P. Carmalt x
  • Musculoskeletal System x
  • Refine by Access: All Content x
Clear All Modify Search



To determine the holding capacity of a 5.5-mm-diameter cortical bone screw when placed in the third phalanx (P3) of horses and assess whether screw placement through the dorsal hoof wall into P3 would be tolerated by clinically normal horses and would alleviate signs of pain and prevent P3 rotation in horses with oligofructose-induced laminitis.


40 limbs from 10 equine cadavers and 19 clinically normal adult horses.


In part 1 of a 3-part study, a 5.5-mm-diameter cortical bone screw was inserted by use of a lag-screw technique through the dorsal hoof wall midline into P3 of 40 cadaveric limbs and tested to failure to determine screw pullout force. In part 2, 6 horses had 5.5-mm-diameter cortical bone screws placed in both forefeet as described for part 1. Screws were removed 4 days after placement. Horses were monitored for lameness before and for 2 weeks after screw removal. In part 3, 13 horses were randomly assigned to serve as controls (n = 3) or undergo screw placement without (group 2; 6) or with (group 3; 4) a washer. Following the acquisition of baseline data, horses were sedated and administered oligofructose (10 g/kg) via a stomach tube. Twenty-four hours later, screws were placed as previously described in both forefeet of horses in groups 2 and 3. Horses were assessed every 4 hours, and radiographic images of the feet were obtained at 96 and 120 hours after oligofructose administration. Horses were euthanized, and the feet were harvested for histologic examination.


The mean ± SD screw pullout force was 3,908.7 ± 1,473.4 N, and it was positively affected by the depth of screw insertion into P3. Horses of part 2 tolerated screw placement and removal well and did not become lame. All horses of part 3 developed signs of acute lameness, and the distance between P3 and the dorsal hoof wall increased slightly over time. The change in the ratio of the dorsal hoof wall width at the extensor process of P3 to that at the tip of P3 over time was the only variable significantly associated with treatment.


Placement of a 5.5-mm-diameter cortical bone screw through the dorsal hoof wall into P3 had sufficient holding power to counteract the pull of the deep digital flexor tendon in approximately 500-kg horses, and placement of such a screw was well tolerated by clinically normal horses but did not alleviate signs of pain in horses with oligofructose-induced laminitis. Further research is necessary before this technique can be recommended for horses with naturally occurring acute laminitis.

Full access
in American Journal of Veterinary Research