Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Kangmoon Seo x
  • Ophthalmology x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To compare morphology of the ciliary cleft (CC) region in dogs after topical administration of latanoprost, pilocarpine, or a combination of latanoprost and pilocarpine.

ANIMALS 6 Beagles.

PROCEDURES A prospective 4-phase crossover study with washout periods was performed. Latanoprost (phase L), pilocarpine (phase P), pilocarpine followed by latanoprost (phase PL), and latanoprost followed by pilocarpine (phase LP) were administered to the right eye. Artificial tears were administered to the left eye (control eye). For each phase, pupil diameter and intraocular pressure (IOP) were measured and ultrasonographic biomicroscopy was performed 2 hours after topical treatment. Angle opening distance (AOD), ciliary cleft width (CCW), ciliary cleft length (CCL), and ciliary cleft area (CCA) were evaluated.

RESULTS All treated eyes had marked miosis without significant differences in pupil diameter among phases. Significant IOP reductions were detected for all phases, except phase P. The AOD and CCA were significantly increased in all phases for treated eyes, compared with results for control eyes. The CCW was significantly increased in phases P, PL, and LP; CCL was significantly increased in phases PL and LP. Comparison of treated eyes among phases revealed that CCW differed significantly between phases L and P and between phases L and PL.

CONCLUSIONS AND CLINICAL RELEVANCE Prostaglandin-mediated and cholinergic-mediated miosis caused variations in CC configurations. When latanoprost and pilocarpine were used in combination, the first drug administered determined the cleft morphology, which was not fully reversed by the second drug. The CC morphology did not fully explain IOP reductions.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the intraoperative and postoperative analgesic effects of intracameral lidocaine hydrochloride injection in dogs undergoing phacoemulsification.

Animals—12 healthy Beagles with healthy eyes.

Procedures—Dogs were randomly assigned to receive 1 of 2 intracameral injections: 2% lidocaine hydrochloride solution (0.3 mL) or an equivalent amount of balanced salt solution (BSS). All dogs were treated with acepromazine (0.05 mg/kg, IV) and cefazolin (30 mg/kg, IV), and tropicamide drops were topically applied to the eyes. Anesthesia was induced with propofol and maintained with isoflurane. The initial end-tidal isoflurane concentration was maintained at 1.2%. Heart rate, respiratory rate, arterial blood pressure, esophageal temperature, inspired and end-tidal isoflurane concentrations, and oxygen saturation were recorded every 5 minutes. The allocated agent was injected intracamerally after aspiration of the same volume of aqueous humor. Ten minutes after injection, phacoemulsification was performed. After surgery began, the isoflurane concentration was adjusted according to heart rate and mean arterial blood pressure. Pain scores were recorded before surgery and at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 16, and 24 hours after extubation.

Results—Isoflurane requirements were significantly higher in the BSS group than in the lidocaine group. Mean ± SD time to administration of supplementary analgesia was significantly shorter in the BSS group (1.4 ± 1.2 hours) than in the lidocaine group (4.9 ± 1.2 hours).

Conclusions and Clinical Relevance—Intracameral lidocaine injection had significant analgesic effects in dogs undergoing cataract surgery. Results of this study suggest the value of intracameral lidocaine injection as an analgesic for intraocular surgery in dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of peribulbar anesthesia (sub-Tenon injection of lidocaine hydrochloride) on akinesia of extraocular muscles, mydriasis, and intraoperative and postoperative analgesia in dogs undergoing phacoemulsification.

Animals—14 Beagles with ophthalmically normal eyes.

Procedures—A blinded randomized controlled trial was performed. Dogs were anesthetized and assigned to 2 treatments: concurrent sub-Tenon injection of 2% lidocaine hydrochloride solution (2 mL) and IV injection of saline (0.9% NaCl) solution (0.02 mL/kg; lidocaine group [n = 7]) or concurrent sub-Tenon injection of saline solution (2 mL) and IV injection of 0.2 mg of atracurium/kg (0.02 mL/kg; control group [7]). Pupils were dilated by topical application of a combined tropicamide and phenylephrine ophthalmic solution. Ten minutes after the injections, pupil diameter was measured and phacoemulsification was performed. End-tidal isoflurane concentration was used to evaluate intraoperative pain. Subjective pain scores were recorded during the postoperative period.

Results—Akinesia was induced and maintained throughout the surgery in all eyes. Mean ± SD pupil diameter was significantly greater in the lidocaine group (13.7 ± 0.7 mm) than in the control group (12.2 ± 0.8 mm). Isoflurane requirements were significantly lower in the lidocaine group than the control group. However, postoperative pain scores were not significantly different between the groups.

Conclusions and Clinical Relevance—Sub-Tenon injection of lidocaine was an effective method for inducing akinesia of extraocular muscles, mydriasis, and intraoperative analgesia for phacoemulsification in dogs. Therefore, this could be another option for surgical field exposure and pain management during phacoemulsification in dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the mydriatic effect of intracameral injection of preservative-free 1% and 2% lidocaine hydrochloride solutions and determine the onset and duration of mydriasis according to the concentration and volume of lidocaine administered in healthy dogs.

Animals—5 healthy adult Beagles weighing 7 to 10 kg, with no apparent ocular disease.

Procedures—A double-blind randomized 9-session crossover trial was designed. Both eyes were assigned to 9 treatments with a minimum 7-day washout period between treatments: 0.1, 0.2, and 0.3 mL of 2% lidocaine solution; 0.1, 0.2, and 0.3 mL of 1% lidocaine solution; and 0.1, 0.2, and 0.3 mL of balanced salt solution. Dogs were anesthetized, and the allocated treatment was injected intracamerally after aspiration of the same volume of aqueous humor from the anterior chamber of each eye. Two perpendicular pupil diameters were measured. Intraocular pressure, heart rate, respiratory rate, ECG readings, and end-tidal partial pressure of CO2 were monitored.

Results—Intracameral injection of 1% or 2% lidocaine solutions in volumes of 0.1 to 0.3 mL induced a significant degree of mydriasis, and the effect was maintained for 74 to 142 minutes. Lidocaine injection had no significant effect on intraocular pressure, heart rate, respiratory rate, ECG readings, or end-tidal partial pressure of CO2.

Conclusions and Clinical Relevance—Intracameral lidocaine injection in healthy dogs induced mydriasis, the timing of which was affected by concentration and volume of lidocaine. This technique could serve as an alternative to topically administered mydriatics for intraocular surgery in dogs.

Full access
in American Journal of Veterinary Research