Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Hussni O. Mohammed x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether equine motor neuron disease (EMND) could be induced in adult horses fed a diet low in vitamin E and high in copper and iron.

Animals—59 healthy adult horses.

Procedure—Horses in the experimental group (n = 8) were confined to a dirt lot and fed a concentrate low in vitamin E and high in iron and copper in addition to free-choice grass hay that had been stored for 1 year. Control horses (n = 51) were fed a concentrate containing National Research Council–recommended amounts of copper, iron, and vitamin E. The hay fed to control horses was the same as that fed to experimental horses, but it had not been subjected to prolonged storage. Control horses had seasonal access to pasture, whereas experimental horses had no access to pasture. Horses that developed clinical signs of EMND were euthanatized along with an age-matched control horse to determine differences in hepatic concentrations of vitamin E, vitamin A, copper, iron, and selenium.

Results—4 experimental horses developed clinical signs of EMND. Plasma concentrations of vitamin E decreased in all 8 experimental horses. There were no significant changes in plasma concentrations of vitamin A, selenium, and copper or serum concentrations of ferritin. There were no significant differences in those analytes between experimental horses with EMND and experimental horses that did not develop EMND. No control horses developed EMND.

Conclusions and Clinical Relevance—Results suggest that lack of access to pasture, dietary deficiency of vitamin E, or excessive dietary copper are likely risk factors for EMND.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate the influence of oxidative stress in terms of antioxidant capacity and lipid peroxidation on the probability of motor neuron disease (MND) in horses.

Animals—88 horses with MND (cases) and 49 controls.

Procedures—Blood samples were collected from all horses enrolled, and RBCs and plasma were harvested. Activity of the enzyme erythrocytic superoxide dismutase 1 (SOD1) was determined in the RBCs. Plasma concentrations of α-tocopherols and β-carotenes and activity of glutathione peroxidase were also evaluated. Degree of lipid peroxidation was measured by determining plasma concentrations of lipid hydroperoxides. Differences were evaluated between horse groups.

Results—Cases had lower erythrocyte SOD1 activity than did controls, but the difference was not significant. On the other hand, plasma vitamin E concentrations differed significantly between groups, with the cases having lower concentrations. Neither plasma vitamin A concentration nor glutathione peroxidase activity differed between groups; however, cases had significantly higher concentrations of lipid hydroperoxides (18.53μM) than did controls (12.35μM).

Conclusions and Clinical Relevance—Horses with MND differed from those without MND by having a lower plasma concentration of vitamin E and higher concentrations of lipid hydroperoxides. Results parallel the findings in humans with sporadic amyotrophic sclerosis and provide evidence supporting the involvement of oxidative stress in the 2 conditions.

Full access
in American Journal of Veterinary Research