Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Hideo Akiyoshi x
  • Analytic Techniques x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To compare ultracentrifugation, precipitation, and membrane affinity chromatography methods for isolation of extracellular vesicles (EVs) from canine plasma samples and to identify suitable reference genes for incorporation into a quantitative reverse transcription PCR assay of microRNA expression in plasma EVs of healthy dogs.

ANIMALS

6 healthy Beagles.

PROCEDURES

Plasma samples were obtained from each dog, and EVs were isolated from 0.3 mL of these samples via ultracentrifugation, precipitation, and membrane-affinity chromatographic methods. Nanoparticle tracking analysis was performed to determine the concentration and size distribution of EVs isolated by the ultracentrifugation method. Expression levels (cycle threshold values) of 4 microRNAs (let-7a, miR-16, miR-26a, and miR-103) were then compared by means of quantitative reverse transcription PCR assay. Three statistical programs were used to identify the microRNAs most suitable for use as reference genes.

RESULTS

Results indicated that ultracentrifugation was the most stable of all 3 methods for isolating microRNAs from 0.3 mL of plasma. Nanoparticle tracking revealed that EV samples obtained by the ultracentrifugation method contained a mean ± SD of approximately 1.59 × 1010 vesicles/mL ± 4.2 × 108 vesicles/mL. Of the 4 microRNAs in plasma EVs isolated by ultracentrifugation, miR-103 was the most stable.

CONCLUSIONS AND CLINICAL RELEVANCE

The ultracentrifugation method has potential as a stable method for isolating EVs from canine plasma samples with a high recovery rate, and miR-103 may provide the most stable reference gene for normalizing microRNA expression data pertaining to plasma EVs isolated by ultracentrifugation.

Full access
in American Journal of Veterinary Research