Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Hajime Ohmura x
  • Cardiovascular System x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the influence of transportation by road and air on heart rate (HR) and HR variability (HRV) in horses.

Animals—6 healthy horses.

Procedures—ECG recordings were obtained from horses before (quarantine with stall rest [Q]; 24 hours) and during a journey that included transportation by road (RT; 4.5 hours), waiting on the ground in an air stall (W; 5.5 hours), and transportation by air (AT; 11 hours); HR was determined, and HRV indices of autonomic nervous activity (low-frequency [LF; 0.01 to 0.07 Hz] and high-frequency [HF; 0.07 to 0.6 Hz] power) were calculated.

Results—Mean ± SD HRs during Q, RT, W, and AT were 38.9 ± 1.5 beats/min, 41.7 ± 5.6 beats/min, 41.5 ± 4.3 beats/min, and 48.8 ± 5.6 beats/min, respectively; HR during AT was significantly higher than HR during Q. The LF power was significantly higher during Q (3,454 ± 1,087 milliseconds2) and AT (3,101 ± 567 milliseconds2) than it was during RT (1,824 ± 432 milliseconds2) and W (2,072 ± 616 milliseconds2). During Q, RT, W, and AT, neither HF powers (range, 509 to 927 milliseconds2) nor LF:HF ratios (range, 4.1 to 6.2) differed significantly. The HR during RT was highly correlated with LF power (R 2 = 0.979), and HR during AT was moderately correlated with the LF:HF ratio (R 2 = 0.477).

Conclusions and Clinical Relevance—In horses, HR and HRV indices during RT and AT differed, suggesting that exposure to different stressors results in different autonomic nervous influences on HR.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether evaluation of heart rate (HR) and HR variability (HRV) during prolonged road transportation in horses provides a sensitive index of autonomic stimulation.

Animals—Five 2-year-old Thoroughbreds.

Procedure—ECGs were recorded as horses were transported for 21 hours in a 9-horse van. Heart rate, high-frequency (HF) power, low-frequency (LF) power, and LF-to-HF ratio from Fourier spectral analyses of ECGs were calculated and compared with values recorded during a 24-hour period of stall rest preceding transportation.

Results—HR, HF power, and LF power had diurnal rhythms during stall rest but not during road transportation. Heart rate was higher and HF power and LF power lower during road transportation than stall rest, and HR, HF power, LF power, and LF-to-HF ratio all decreased with time during road transportation. Heart rate during stall rest was weakly and inversely associated with LF power, but during road transportation was strongly associated with LF power, HF power, and LF-to-HF ratio. Neither LF power nor HF power was correlated with LF-to-HF ratio during stall rest, but LF power was strongly and HF power weakly correlated with LF-to-HF ratio during road transportation. High-frequency power and LF power were significantly correlated with each other during stall rest and road transportation. Heart rate was significantly influenced by LF power and LF-to-HF ratio during stall rest (R 2 = 0.40) and by HF power and LF-to-HF ratio during road transportation (R 2 = 0.86).

Conclusions and Clinical Relevance—HR is influenced by different sympathovagal mechanisms during stall rest, compared with during road transportation; HRV may be a sensitive indicator of stress in transported horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether withholding of food affects autonomic nervous system balance by analysis of heart rate (HR), HR variability (HRV), and frequency of second-degree atrioventricular block in horses.

Animals—5 healthy Thoroughbreds.

Procedures—For two 24-hour periods in a crossover study, food was withheld from horses or horses were maintained on their regular feeding schedule (control conditions) in their stalls and Holter monitor ECG recordings were obtained. The ECGs were analyzed by use of fast-Fourier transformation, and power spectrum densities were calculated for low-frequency (0.01 to 0.07 Hz) and high-frequency (0.07 to 0.6 Hz) variations in HR. Serum cortisol and plasma ACTH, norepinephrine, and glucose concentrations were measured at predetermined time points.

Results—Withholding of food resulted in significantly lower HR and more frequent second-degree atrioventricular block (the frequency of which was inversely related to the HR), compared with findings for control conditions. Circadian rhythms were similar during food-withholding and control conditions; peak HR was detected from 7:00 pm to 8:00 pm, and the lowest HR was detected in the early morning. During food-withholding conditions, the low-frequency and high-frequency components of HRV were significantly higher, and the low-frequency-to-high-frequency ratio was lower than during control conditions. Serum cortisol concentration was higher and plasma glucose concentration was lower at 6:00 pm in horses when food was withheld, compared with findings during control conditions.

Conclusions and Clinical Relevance—Indices of HRV seemed to be sensitive to changes in autonomic nervous activity and may be useful as clinical indices of the neuroendocrine response to stressors in horses.

Full access
in American Journal of Veterinary Research