Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Gert J. Breur x
  • Biomechanics x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To compare temporospatial variables (TSVs) and kinetic variables (KVs) for fore-limbs and hind limbs of small and large dogs of various breeds during walking and to determine associations among body weight (BW), TSVs, and KVs in these groups.

Animals—12 adult dogs with no evidence of lameness.

Procedures—Dogs (grouped according to BW as small [< 10 kg; n = 6] or large [> 25 kg; 6]) were walked in a straight line at their preferred velocity on a wooden platform with an embedded pressure-sensing walkway. Five valid trials were analyzed for each dog; mean TSVs and KVs were determined for each group. The TSVs and KVs for forelimbs and hind limbs were compared between groups, and correlations among BW, TSVs, and KVs were determined.

Results—Small dogs had significantly smaller TSVs and KVs than did large dogs. Temporal variables of small dogs and absolute vertical force variables of small and large dogs increased as BW increased. However, normalized peak vertical force and weight distribution values among the 4 limbs were similar between groups.

Conclusions and Clinical Relevance—Substantial similarities and differences were detected in gait characteristics between small and large dogs. Results indicated TSVs and KVs can be used for comparison of the walking gait between dogs or for comparison of variables between limbs in an individual dog. Use of the pressure-sensing walkway is a simple method for acquisition of TSVs and KVs for large and small dogs.

Full access
in American Journal of Veterinary Research


Objective—To test the hypotheses that kinematic data of the sagittal motion of canine hind limbs during walking obtained with a 2-dimensional (2-D) system correlate well with those obtained with a 3-dimensional (3-D) system and that the data obtained with the 2-D system are repeatable.

Animals—6 adult dogs with no evidence of lameness.

Procedures—Hind limb motions of 6 walking dogs were recorded via 2-D video and 3-D optoelectric systems simultaneously. Five valid trials were digitized, and 5 data sets (2-D 60 Hz, 3-D 180 Hz, 3-D sagittal 180 Hz, 3-D 60 Hz, and 3-D sagittal 60 Hz) of a complete gait cycle were created for each dog. In sagittal data sets, 3-D data were reduced to exclude coordinates for mediolateral orientation. Temporospatial parameters; angles of hip, stifle, and tarsal joints; and coefficients of variation of angular measurements of each dog were calculated for each data set. Accuracy of the 2-D analysis was determined by calculating mean absolute differences and estimating agreement between the 2-D and 3-D 180-Hz data sets.

Results—Values of joint angles and angular excursions measured with the 2-D system were repeatable and agreed with respective values obtained with the 3-D system. Reduction of the sampling rate had a greater impact on values of kinematic variables obtained with the 3-D system than did elimination of data on mediolateral orientation.

Conclusions and Clinical Relevance—Kinematic analysis using a 2-D video system provided accurate and repeatable data of the sagittal angular motion of canine hind limbs during walking.

Full access
in American Journal of Veterinary Research



To use the small data approach of the Clinical and Laboratory Standards Institute (CLSI) to evaluate the transferability of reference intervals (RIs) for kinetic variables obtained with instrumented gait analysis (IGA) in dogs from an RI-originator laboratory to another laboratory that used the same data acquisition and analytic techniques for IGA in walking dogs.


27 adult client-owned dogs without evidence of lameness.


Dogs were individually walked at their preferred velocity on a pressure-sensing walkway for IGA at the Colorado State University Animal Gait Laboratory (CSU-AGL), and 6 valid trials were analyzed for each dog. The small data approach of the CLSI was then used to evaluate transferability of RIs previously established at the Purdue University Animal Gait Laboratory (PU-AGL). A linear model was used to establish weight-dependent RIs for peak vertical force (PVF).


Results indicated that RIs of dynamic weight distribution (DWD), DWD symmetry index, DWD coefficient of variation, PVF symmetry index, and PVF coefficient of variation were transferable from PU-AGL to CSU-AGL, whereas the weight-dependent RIs for PVF were not. Regression slopes for PVF versus body weight were greater for all limbs in dogs tested at the CSU-AGL, compared with historic results for dogs tested at the PU-AGL.


Use of the small data approach method of the CLSI to validate transference of RIs for IGA kinetic variables in walking dogs was simple and efficient to perform and may help facilitate clinical and research collaborations on gait analysis.

Full access
in American Journal of Veterinary Research


OBJECTIVE To develop a model of hip joint synovitis on the basis of intra-articular injection of a sodium urate suspension in dogs and to characterize associated gait changes.

ANIMALS 6 healthy adult dogs.

PROCEDURES Each dog was sedated, and synovitis was induced by injection of 1 mL of a sodium urate suspension (20 mg/mL) into the right hip joint under ultrasonographic guidance. Observational and instrumented gait analyses to determine temporospatial, kinetic, and kinematic variables were performed prior to and 4, 8, and 24 hours after sedation and synovitis induction.

RESULTS Injection of a sodium urate suspension into the hip joint of healthy dogs resulted in lameness of the ipsilateral pelvic limb as determined by observational and instrumented gait analyses. For all dogs, lameness was clinically detectable within 1.5 to 2 hours after injection, reached its maximum intensity at 4 hours after injection, and had subsided by 24 hours after injection.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that injection of a sodium urate suspension into the hip joint of healthy dogs reliably induced synovitis and signs of pain and lameness in the ipsilateral pelvic limb that lasted 24 hours. This model can be used in conjunction with instrumented gait analysis to provide information on gait changes associated with hip joint disease and might be useful for evaluating the efficacy of analgesics or other interventions for the treatment of hip joint disease in dogs.

Full access
in American Journal of Veterinary Research