Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: George E. Moore x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the effect of multiple hydrogen peroxide gas plasma (HPGP) sterilizations on the rate of closure of ameroid constrictors.

Sample—Thirty-six 5.0-mm ameroid constrictors.

Procedures—Ameroid constrictors were randomly allocated to 6 groups. Each group underwent 1, 2, 3, 4, 5, or 6 HPGP sterilizations. Ameroid constrictors were then incubated for 35 days in canine plasma and digitally imaged at predetermined times during incubation. One individual, who was unaware of the group to which each ameroid constrictor was assigned, measured the lumen area of the constrictor on each digital image. Mean lumen area was compared among groups.

Results—No ameroid constrictors were completely closed after 35 days of incubation in canine plasma. Mean lumen area after incubation did not differ among constrictors that underwent 1, 2, and 3 sterilizations. Constrictors that underwent 4 sterilizations were closed significantly more than were those that underwent 1, 2, or 3 sterilizations. Mean lumen area after incubation did not differ significantly between constrictors that underwent 5 and 6 sterilizations, although the final lumen areas for those constrictors were significantly smaller than those for constrictors that underwent 1, 2, 3, and 4 sterilizations.

Conclusions and Clinical Relevance—Ameroid constrictors that underwent 5 and 6 HPGP sterilizations had a 9% to 12% decrease in lumen area, compared with that of constrictors that underwent ≤ 4 plasma sterilizations, and the use of such constrictors could increase the risk of portal hypertension and secondary acquired shunting or decrease the risk of persistent shunting.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate the effect of a bovine albumin–derivatized glutaraldehyde (BA-DG) biopolymer sealant on leakage pressures of intestinal anastomoses in jejunal tissue collected from fresh canine cadavers and to evaluate changes in circumference and cross-sectional area of the anastomotic site resulting from sealant application.

SAMPLE 24 jejunal anastomoses from 4 fresh canine cadavers.

PROCEDURES Jejunal tissue specimens were collected, and adjacent segment anastomoses were created within 12 hours after euthanasia of each dog. The tissue constructs were randomly assigned to 1 of 2 groups in which sealant was or was not applied. The outer circumference of all anastomoses in the sealant group was measured before and after application of the sealant; the cross-sectional area at the anastomotic site was then calculated at each time point. Tissue constructs were pressure tested, and leakage pressure and site were recorded. All testing was completed within 24 hours after tissue collection.

RESULTS Compared with preapplication findings, there were no significant changes in outer circumference or cross-sectional area at the anastomotic site after sealant application. Leakage pressures in the sealant group were significantly higher than those in the no-sealant group.

CONCLUSIONS AND CLINICAL RELEVANCE The use of surgical sealant on fresh canine cadaver jejunal anastomoses resulted in significantly higher leakage pressure at the anastomotic site; no immediate tissue deformation of the outer circumference or cross-sectional area occurred after sealant application. Future in vivo investigations are warranted to evaluate the effects of this sealant and potential benefits for clinical patients undergoing enterectomy.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate effects of bite distance of an interlocking horizontal mattress epitendinous suture (IHMES) from the repair site on tensile strength of canine tendon repairs.

SAMPLE

72 canine cadaveric superficial digital flexor tendons (SDFTs).

PROCEDURES

Transverse tenotomy was performed, and SDFTs were repaired with a locking-loop construct (LL construct) or 3 LL constructs with IHMES suture bites placed 5 (LL + 5ES construct), 10 (LL + 10ES construct), or 15 (LL + 15ES construct) mm from the transection site (18 SDFTs/group). Constructs were loaded to failure. Load at 1− and 3-mm gapping, yield force, failure load, and failure mode were evaluated.

RESULTS

Mean ± SD yield force and failure load for LL constructs were significantly lower than for IHMES constructs. Load at 1− and 3-mm gapping was significantly higher for IHMES constructs. Increasing the bite distance significantly increased construct strength (134.4 ± 26.1 N, 151.0 ± 16.8 N, and 182.1 ± 23.6 N for LL + 5ES, LL + 10ES, and LL + 15ES constructs, respectively), compared with strength for the LL construct. Failure mode differed significantly among constructs when an IHMES was used.

CONCLUSIONS AND CLINICAL RELEVANCE

Addition of an IHMES to an LL construct led to increased ultimate tensile strength by 2.5 times and significantly reduced gap formation. Increasing the IHMES bite distance increased yield force by 2.1, 2.3, and 2.7 times for bites placed 5, 10, and 15 mm from the tenotomy, respectively. Positioning an IHMES at a greater distance from the repair site provided superior biomechanical strength for tendon repairs in dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare the bone temperature and final hole dimensions associated with sequential overdrilling (SO) and single 6.2-mm drill bit (S6.2DB) methods used to create transcortical holes in the third metacarpal bones (MCIIIs) of horse cadavers.

Sample—60 MCIIIs from 30 horse cadavers.

Procedures—In phase 1, hole diameter, tap insertion torque, peak bone temperature, and postdrilling bit temperature for 6.2-mm-diameter holes drilled in the lateral or medial cortical region of 12 MCIIIs via each of three 2-bit SO methods with a single pilot hole (diameter, 3.2, 4.5, or 5.5 mm) and the S6.2DB method were compared. In phase 2, 6.2-mm-diameter transcortical holes were drilled via a 2-bit SO method (selected from phase 1), a 4-bit SO method, or a S6.2DB method at 1 of 3 locations in 48 MCIIIs; peak bone temperature during drilling, drill bit temperature immediately following drilling, and total drilling time were recorded for comparison.

Results—Hole diameter or tap insertion torque did not differ among phase 1 groups. Mean ± SD maximum bone temperature increases at the cis and trans cortices were significantly less for the 4-bit SO method (3.64 ± 2.01°C and 8.58 ± 3.82°C, respectively), compared with the S6.2DB method (12.00 ± 7.07°C and 13.19 ± 7.41°C, respectively). Mean drilling time was significantly longer (142.9 ± 37.8 seconds) for the 4-bit SO method, compared with the S6.2DB method (49.7 ± 24.3 seconds).

Conclusions and Clinical Relevance—Compared with a S6.2DB method, use of a 4-bit SO method to drill transcortical holes in cadaveric equine MCIIIs resulted in smaller bone temperature increases without affecting hole accuracy.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effect of a continuous locking novel epitendinous suture (nES) pattern with and without a core locking-loop (LL) suture on the biomechanical properties of ex vivo canine superficial digital flexor tendon (SDFT) tenorrhaphy constructs.

SAMPLE

54 cadaveric forelimb SDFTs from 27 musculoskeletally normal adult dogs.

PROCEDURES

Tendons were assigned to 3 groups (18 SDFTs/group): sharply transected and repaired with a core LL suture alone (group 1), an nES pattern alone (group 2), or a combination of a core LL suture and nES pattern (group 3). All constructs underwent a single load-to-failure test. Yield, peak, and failure loads; gap formation incidence; and mode of failure were compared among the 3 groups.

RESULTS

Mean yield, peak, and failure loads differed significantly among the 3 groups and were greatest for group 3 and lowest for group 1. Mean yield, peak, and failure loads for group 3 constructs were greater than those for group 1 constructs by 50%, 47%, and 44%, respectively. None of the group 3 constructs developed 3-mm gaps. The most common mode of failure was suture pulling through the tendon for groups 1 (12/18) and 2 (12/18) and suture breakage for group 3 (13/18).

CONCLUSIONS AND CLINICAL RELEVANCE

Results suggested augmentation of a core LL suture with an nES pattern significantly increased the strength of and prevented 3-mm gap formation at the tenorrhaphy site in ex vivo canine SDFTs. In vivo studies are necessary to assess the effectiveness and practicality of the nES pattern for SDFT repair in dogs.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the effect of epitendinous suture (ES) caliber on the tensile strength of flexor tendon repairs in cadaveric specimens from dogs.

SAMPLE

60 cadaveric superficial digital flexor tendons (SDFTs) from 30 skeletally mature dogs.

PROCEDURES

Specimens were randomly assigned to 5 suture caliber groups (n = 12 SDFTs/group). After sharp transection, SDFTs were repaired by placement of a simple continuous circumferential ES created with size-0, 2-0, 3-0, 4-0, or 5-0 polypropylene suture. Constructs were preloaded to 2 N and load tested to failure. Loads at yield, peak, and failure and mode of failure were compared among groups by statistical methods.

RESULTS

Yield, peak, and failure loads for SDFT repair constructs were positively correlated with ES caliber and did not differ between the size-0 and 2-0 groups on pairwise comparisons. Yield load was significantly greater for size-0, 2-0, and 3-0 groups than for the 4-0 and 5-0 groups. Peak and failure loads were significantly greater for the size-0 and 2-0 groups than for the remaining groups. Most size-0 (12/12), 2-0 (12/12), and 3-0 (10/12) group constructs failed because of ES pull-through; several constructs in the 4-0 group (5/12) and most in the 5-0 group (11/12) failed because of ES breakage.

CONCLUSIONS AND CLINICAL RELEVANCE

Results suggested size-0 and 2-0 sutures should be considered when placing an ES for flexor tendon repairs in dogs. However, in vivo studies are needed determine the effects of increasing ES caliber on clinical outcomes for dogs undergoing these procedures.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine effects of bite depth for placement of an epitendinous suture on the biomechanical strength and gap formation of repaired canine tendons.

SAMPLE

48 superficial digital flexor tendons (SDFTs) obtained from 24 canine cadavers.

PROCEDURES

Tendons were assigned to 3 groups (16 tendons/group). Each SDFT was transected and then repaired with a continuous epitendinous suture placed with a bite depth of 1, 2, or 3 mm for groups 1, 2, and 3, respectively. Specimens were loaded to failure. Failure mode, gap formation, yield force, peak force, and failure force were analyzed.

RESULTS

Yield, peak, and failure forces differed significantly between groups 1 and 3 and groups 2 and 3 but not between groups 1 and 2. Comparison of the force resisted at 1 and 3 mm of gapping revealed a significant difference between groups 1 and 3 and groups 2 and 3 but not between groups 1 and 2. Failure mode did not differ among groups; suture pull-through occurred in 43 of 48 (89.6%) specimens.

CONCLUSIONS AND CLINICAL RELEVANCE

Increasing bite depth of an epitendinous suture toward the center of the tendon substance increased repair site strength and decreased the incidence of gap formation. Repair of tendon injuries in dogs by use of an epitendinous suture with bites made deep into the tendon should result in a stronger repair, which potentially would allow loading and rehabilitation to begin sooner after surgery. Suture techniques should be investigated in vivo to determine effects on tendinous healing and blood supply before clinical implementation.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare the biomechanical strength and incidence of gap formation among canine superficial digital flexor tendon (SDFT) constructs that underwent core tenorrhaphy only and those in which the core tenorrhaphy was augmented with skin staples or a continuous Silfverskiold cross-stitch (SXS) suture pattern.

SAMPLE

42 cadaveric forelimb SDFTs from 21 musculoskeletally normal dogs.

PROCEDURES

Tendons were randomly assigned to 3 groups (14 SDTFs/group), sharply transected, and repaired with a core locking-loop suture alone (group 1) or augmented with circumferential placement of skin staples (group 2) or a continuous SXS suture pattern (group 3) in the epitenon. All constructs underwent a single load-to-failure test. Yield, peak, and failure loads, incidence of gap formation, and mode of failure were compared among the 3 groups.

RESULTS

Mean yield, peak, and failure loads differed significantly among experimental groups and were greatest for group 3 and lowest for group 1 constructs. The incidence of gap formation differed among the tested groups and was lowest for group 3 and highest for group 1. The most common mode of construct failure was the suture pulling through the tendon for group 1, staple deformation for group 2, and epitendinous suture breakage for group 3.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated epitendinous placement of skin staples around a core SDFT tenorrhaphy site improved the biomechanical strength and resistance to gap formation for the repair but was inferior to epitendinous placement of SXS sutures. Further research is necessary before skin staples are used for tenorrhaphy augmentation in clinical patients.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the extent to which a hydroxyapatite coating promotes pin stability in the third metacarpal bone during transfixation casting in horses.

Animals—14 adult horses.

Procedures—7 horses each were assigned to either an uncoated or hydroxyapatite-coated pin group. Three transcortical pins were placed in the third metacarpal bone of each horse and incorporated into a cast for 8 weeks. Insertion and extraction torque were measured, and torque reduction was calculated. Radiography was performed at 0, 4, and 8 weeks. Lameness evaluation was performed at 2, 4, 6, and 8 weeks. Bacteriologic culture of pins and pin holes was performed at pin removal.

Results—All horses used casts without major complication throughout the study. Insertion torque was higher in uncoated pins. There was no effect of group on extraction torque. Hydroxyapatite-coated pins had lower torque reduction. Five of 15 hydroxyapatite-coated pins maintained or increased stability, whereas all uncoated pins loosened. Pin hole radiolucency, lameness grades, and positive bacteriologic culture rates were not different between groups.

Conclusions and Clinical Relevance—Hydroxyapatite coating increased pin stability within the third metacarpal bone of horses during 8 weeks of transfixation casting but did not improve pin performance on clinical assessments. Clinical use of hydroxyapatite-coated transfixation pins may result in greater pin stability; however, further research is necessary to improve the consistency of pin osteointegration and elucidate whether clinical benefits will ultimately result from this approach in horses.

Full access
in American Journal of Veterinary Research