Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: George E. Moore x
  • Bone, Joint, and Cartilage x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effect of 2 hydroxyapatite pin coatings on heat generated at the bone-pin interface and torque required for insertion of transfixation pins into cadaveric equine third metacarpal bone.

Sample Population—Third metacarpal bone pairs from 27 cadavers of adult horses.

Procedures—Peak temperature of the bone at the cis-cortex and the hardware and pin at the trans-cortex was measured during insertion of a plasma-sprayed hydroxyapatite (PSHA)—coated, biomimetic hydroxyapatite (BMHA)—coated, or uncoated large animal transfixation pin. End-insertional torque was measured for each pin. The bone-pin interface was examined grossly and histologically for damage to the bone and coating.

Results—The BMHA-coated transfixation pins had similar insertion characteristics to uncoated pins. The PSHA-coated pins had greater mean peak bone temperature at the cis-cortex and greater peak temperature at the trans-cortex (70.9 ± 6.4°C) than the uncoated pins (38.7 ± 8.4°C). The PSHA-coated pins required more insertional torque (10,380 ± 5,387.8 Nmm) than the BMHA-coated pins (5,123.3 ± 2,296.9 Nmm). Four of the PSHA-coated pins became immovable after full insertion, and 1 gross fracture occurred during insertion of this type of pin.

Conclusions and Clinical Relevance—The PSHA coating was not feasible for use without modification of presently available pin hardware. The BMHA-coated pins performed similarly to uncoated pins. Further testing is required in an in vivo model to determine the extent of osteointegration associated with the BMHA-coated pins in equine bone.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine synovial fluid gentamicin concentrations and evaluate adverse effects on the synovial membrane and articular cartilage of tarsocrural joints after implantation of a gentamicin-impregnated collagen sponge.

Animals—6 healthy adult mares.

Procedures—A purified bovine type I collagen sponge impregnated with 130 mg of gentamicin was implanted in the plantarolateral pouch of 1 tarsocrural joint of each horse, with the contralateral joint used as a sham-operated control joint. Gentamicin concentrations in synovial fluid and serum were determined for 120 hours after implantation by use of a fluorescence polarization immunoassay. Synovial membrane and cartilage specimens were collected 120 hours after implantation and evaluated histologically.

Results—Median peak synovial fluid gentamicin concentration of 168.9 μg/mL (range, 115.6 to 332 μg/mL) was achieved 3 hours after implantation. Synovial fluid gentamicin concentrations were < 4 μg/mL by 48 hours. Major histologic differences were not observed in the synovial membrane between control joints and joints implanted with gentamicin-impregnated sponges. Safranin-O fast green stain was not reduced in cartilage specimens obtained from treated joints, compared with those from control joints.

Conclusions and Clinical Relevance—Implantation of a gentamicin-impregnated collagen sponge in the tarsocrural joint of horses resulted in rapid release of gentamicin, with peak concentrations > 20 times the minimum inhibitory concentration reported for common pathogens that infect horses. A rapid decrease in synovial fluid gentamicin concentrations was detected. The purified bovine type I collagen sponges did not elicit substantial inflammation in the synovial membrane or cause mechanical trauma to the articular cartilage.

Full access
in American Journal of Veterinary Research