Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Ellen de Graaf-Roelfsema x
  • Musculoskeletal System x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To investigate the effects of exercise on activation of mitogen-activated protein kinase (MAPK) signaling proteins in horses.

Animals—6 young trained Standardbred geldings.

Procedure—Horses performed a 20-minute bout of exercise on a treadmill at 80% of maximal heart rate. Muscle biopsy specimens were obtained from the vastus lateralis and pectoralis descendens muscles before and after exercise. Amount of expression and intracellular location of phosphospecific MAPK pathway intermediates were determined by use of western blotting and immunofluorescence staining.

Results—Exercise resulted in a significant increase in phosphorylation of p38 pathway intermediates, c-Jun NH2 terminal kinase (JNK), and heat shock protein 27 (HSP27) in the vastus lateralis muscle, whereas no significant changes were found in phosphorylation of extracellular regulated kinase. In the pectoralis descendens muscle, phosphorylation of p38 and HSP27 was significantly increased after exercise. Immunohistochemical analysis revealed fiber-type– specific locations of phosphorylated JNK in type 2a/b intermediate and 2b fibers and phosphorylated p38 in type 1 fibers. Phosphorylated HSP27 was strongly increased after exercise in type 1 and 2a fibers.

Conclusions and Clinical Relevance—The p38 pathway and JNK are activated in the vastus lateralis muscle after a single 20-minute bout of submaximal exercise in trained horses. Phosphorylation of HSP27 as detected in the study reported here is most likely induced through the p38 signaling pathway.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate the effects of acute exercise and long-term training on Na+,K+-ATPase content, mRNA isoforms, and protein concentration in equine muscle.

Animals—6 Standardbreds.

Procedures—Horses performed a bout of exercise on a treadmill before and after 18 weeks of combined interval and endurance training. Muscle biopsy specimens were obtained from vastus lateralis muscle (VLM) and pectoralis descendens muscle (PDM) before and after exercise. The Na+,K+-ATPase content, mRNA isoforms, and protein concentrations were determined by use of [3H]ouabain binding, real-time PCR assay, and western blotting, respectively.

Results—6 Na+,K+-ATPase mRNA isoforms were present in equine muscle, but only A2 and B1 proteins were detected. Exercise before training resulted in increases of mRNA isoforms A1, A2, A3, and B2 in VLM and A1 and B3 in PDM. Training increased resting values for mRNA isoforms A3 and B1 in VLM and B3 in PDM. The Na+,K+-ATPase, [3H]ouabain binding, and proteins of mRNA A2 and B1 increased in VLM, whereas in PDM, only A2 protein increased as a result of training. After training, effects of strenuous exercise on mRNA expression were no longer detectable.

Conclusions and Clinical Relevance—Equine muscle contained all Na+,K+-ATPase mRNA isoforms, but only A2 and B1 proteins could be detected. Expression of these isoforms changed as a result of strenuous exercise and long-term training, representing an adaptive response. Determination of Na+,K+-ATPase gene expression may be relevant for understanding alterations in excitability during neuromuscular diseases.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate alterations in skeletal muscle carnitine metabolism during exercise and training by measuring changes in plasma acylcarnitine concentrations in Standardbreds.

Animals—10 Standardbred geldings with a mean ± SD age of 20 ± 2 months and weight of 384 ± 42 kg.

Procedures—In a 32-week longitudinal study, training on a treadmill was divided into 4 phases as follows: phase 1, acclimatization for 4 weeks; phase 2, 18 weeks with alternating endurance and high-intensity exercise training; phase 3, increased training volume and intensity for another 6 weeks; and phase 4, deconditioning for 4 weeks. In phase 3, horses were randomly assigned to 2 groups as follows: control horses (which continued training at the same level as in phase 2) and high-intensity exercise trained horses. At the end of each phase, a standardized exercise test (SET) was performed. Plasma acylcarnitine, fatty acids, and lactic acid and serum β-hydroxybutyric acid (BHBA) concentrations were assessed before and at different time points after each SET.

Results—Plasma lactic acid, total nonesterified fatty acids, 3-hydroxyisobutyric acid, and acetylcarnitine (C2-carnitine) concentrations significantly increased during SETs, whereas serum BHBA, plasma propionylcarnitine (C3-carnitine), and plasma butyryl- and isobutyrylcarnitine (C4-carnitine) concentrations decreased significantly, compared with those before SETs.

Conclusions and Clinical Relevance—Our findings indicated that the plasma acylcarnitine profile in horses likely reflects skeletal muscle carnitine metabolism following exercise, thereby providing a possible practical method to investigate potential disorders in carnitine metabolism in horses with myopathy.

Full access
in American Journal of Veterinary Research