Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Dawn M. Boothe x
- Neurology x
- Refine by Access: All Content x
Abstract
Objective—To determine whether therapeutic concentrations of levetiracetam can be achieved in cats and to establish reasonable IV and oral dosing intervals that would not be associated with adverse effects in cats.
Animals—10 healthy purpose-bred cats.
Procedures—In a randomized crossover study, levetiracetam (20 mg/kg) was administered orally and IV to each cat. Blood samples were collected 0, 10, 20, and 40 minutes and 1, 1.5, 2, 3, 4, 6, 9, 12, and 24 hours after administration. Plasma levetiracetam concentrations were determined via high-performance liquid chromatography.
Results—Mean ± SD peak concentration was 25.54 ± 7.97 μg/mL. The mean y-intercept for IV administration was 37.52 ± 6.79 μg/mL. Half-life (harmonic mean ± pseudo-SD) was 2.95 ± 0.95 hours and 2.86 ± 0.65 hours for oral and IV administration, respectively. Mean volume of distribution at steady state was 0.52 ± 0.09 L/kg, and mean clearance was 2.0 ± 0.60 mL/kg/min. Mean oral bioavailability was 102 ± 39%. Plasma drug concentrations were maintained in the therapeutic range reported for humans (5 to 45 μg/mL) for at least 9 hours after administration in 7 of 10 cats. Only mild, transient hypersalivation was evident in some cats after oral administration.
Conclusions and Clinical Relevance—Levetiracetam (20 mg/kg) administered orally or IV to cats every 8 hours should achieve and maintain concentrations within the therapeutic range for humans. Levetiracetam administration has favorable pharmacokinetics for clinical use, was apparently tolerated well, and may be a reasonable alternative antiepileptic drug in cats.
Abstract
OBJECTIVE
To compare pharmacokinetics of levetiracetam in serum and CSF of cats after oral administration of extended-release (ER) levetiracetam.
ANIMALS
9 healthy cats.
PROCEDURES
Cats received 1 dose of a commercially available ER levetiracetam product (500 mg, PO). Thirteen blood and 10 CSF samples were collected over a 24-hour period for pharmacokinetic analysis. After 1 week, cats received 1 dose of a compounded ER levetiracetam formulation (500 mg, PO), and samples were obtained at the same times for analysis.
RESULTS
CSF concentrations of levetiracetam closely paralleled serum concentrations. There were significant differences between the commercially available product and the compounded formulation for mean ± SD serum maximum concentration (Cmax; 126 ± 33 μg/mL and 169 ± 51 μg/mL, respectively), Cmax corrected for dose (0.83 ± 0.10 μg/mL/mg and 1.10 ± 0.28 μg/mL/mg, respectively), and time to Cmax (5.1 ± 1.6 hours and 3.1 ± 1.5 hours, respectively). Half-life for the commercially available product and compounded formulation of ER levetiracetam was 4.3 ± 2.0 hours and 5.0 ± 1.6 hours, respectively.
CONCLUSIONS AND CLINICAL RELEVANCE
The commercially available product and compounded formulation of ER levetiracetam both maintained concentrations in healthy cats 12 hours after oral administration that have been found to be therapeutic in humans (ie, 5 μg/mL). Results of this study supported dosing intervals of 12 hours, and potentially 24 hours, for oral administration of ER levetiracetam to cats. Monitoring of serum concentrations of levetiracetam can be used as an accurate representation of levetiracetam concentrations in CSF of cats.
Abstract
OBJECTIVE To evaluate the pharmacokinetics of zonisamide following rectal administration of 20 or 30 mg/kg suspended in sterile water or polyethylene glycol (PEG) to healthy dogs and determine whether either dose resulted in plasma zonisamide concentrations within the recommended therapeutic target range (10 to 40 μg/mL).
ANIMALS 8 healthy mixed-breed dogs.
PROCEDURES Each dog received each of 2 doses (20 or 30 mg/kg) of zonisamide suspended in each of 2 delivery substrates (sterile water or PEG) in a randomized crossover study with a 7-day washout period between phases. A blood sample was collected from each dog immediately before and at predetermined times for 48 hours after zonisamide administration. Plasma zonisamide concentrations were determined by high-performance liquid chromatography, and data were analyzed with a noncompartmental model.
RESULTS Mean maximum plasma concentration, time to maximum plasma concentration, mean residence time, and elimination half-life did not differ significantly among the 4 treatments. The mean maximum plasma concentration for all 4 treatments was less than the therapeutic target range. The mean ± SD area under the concentration-time curve for the 30 mg/kg-in-water treatment (391.94 ± 237.00 h•μg/mL) was significantly greater than that for the 20 mg/kg-in-water (146.19 ± 66.27 h•μg/mL) and 20 mg/kg-in-PEG (87.09 ± 96.87 h•μg/mL) treatments.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that rectal administration of zonisamide at doses of 20 and 30 mg/kg failed to achieve plasma zonisamide concentrations within the recommended therapeutic target range. Therefore, rectal administration of zonisamide cannot be recommended as a suitable alternative to oral administration.