Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: David E. Freeman x
  • Digestive System – Nutrition x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine effects of reactive oxygen metabolites (ROMs), with and without flunixin meglumine, on equine right ventral colon (RVC) in vitro.

Animals—18 healthy horses and ponies.

Procedures—In 3 groups of 6 animals each, short-circuit current and conductance were measured in RVC mucosa in Ussing chambers. The 3 groups received physiologic saline (0.9% NaCl) solution, IV, 10 minutes before euthanasia and tissue incubation in Krebs-Ringer-bicarbonate (KRB) solution; flunixin meglumine (1.1 mg/kg, IV) 10 minutes before euthanasia and tissue incubation in KRB solution; or physiologic saline solution, IV, 10 minutes before euthanasia and incubation in KRB solution with 2.7 × 10−5M flunixin meglumine. Incubation conditions included control (no addition) and ROM systems, including addition of 1mM xanthine and 80 mU of xanthine oxidase (to produce the superoxide radical), 1mM H2O2, and 1mM H2O2 and 0.5mM ferrous sulfate (to produce the hydroxyl radical).

Results—All ROMs that were added or generated significantly increased the short-circuit current except in tissues coincubated with flunixin meglumine, and they induced mild epithelial vacuolation and apoptosis, but did not disrupt the epithelium nor change conductance, lactate dehydrogenase release, or [3H]mannitol flux.

Conclusions and Clinical Relevance—Responses to ROMs could be attributed to increased chloride secretion and inhibited neutral NaCl absorption in equine RVC, possibly by stimulating prostaglandin production. The ROMs examined under conditions of this study could play a role in prostaglandin-mediated colonic secretion in horses with enterocolitis without causing direct mucosal injury.

Full access
in American Journal of Veterinary Research