Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Craig M. Smith x
  • Infectious Disease x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether airborne concentrations of virulent Rhodococcus equi at 2 horse breeding farms varied on the basis of location, time of day, and month.

Sample Population—2 farms in central Kentucky with recurrent R equi-induced pneumonia in foals.

Procedures—From February through July 2008, air samples were collected hourly for a 24-hour period each month from stalls and paddocks used to house mares and their foals. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot technique. Differences were compared by use of zero-inflated negative binomial methods to determine effects of location, time, and month.

Results—Whether mares and foals were housed predominantly in stalls or paddocks significantly affected results for location of sample collection (stall vs paddock) by increasing airborne concentrations of virulent R equi at the site where horses were predominantly housed. Airborne concentrations of virulent R equi were significantly higher from 6:00 pm through 11:59 pm than for the period from midnight through 5:59 am. Airborne concentrations of virulent R equi did not differ significantly between farms or among months.

Conclusions and Clinical Relevance—Airborne concentrations of virulent R equi were significantly increased when horses were predominantly housed at the site for collection of air samples (ie, higher in stalls when horses were predominantly housed in stalls and higher in paddocks when horses were predominantly housed in paddocks). Concentrations of virulent R equi among air samples collected between the hours of 6:00 am and midnight appeared similar.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether soil concentrations of total or virulent Rhodococcus equi differed among breeding farms with and without foals with pneumonia caused by R equi.

Sample Population—37 farms in central Kentucky.

Procedures—During January, March, and July 2006, the total concentration of R equi and concentration of virulent R equi were determined by use of quantitative bacteriologic culture and a colony immunoblot technique, respectively, in soil specimens obtained from farms. Differences in concentrations and proportion of virulent isolates within and among time points were compared among farms.

Results—Soil concentrations of total or virulent R equi did not vary among farms at any time point. Virulent R equi were identified in soil samples from all farms. Greater density of mares and foals was significantly associated with farms having foals with pneumonia attributable to R equi. Among farms with affected foals, there was a significant association of increased incidence of pneumonia attributable to R equi with an increase in the proportion of virulent bacteria between samples collected in March and July.

Conclusions and Clinical Relevance—Results indicated that virulent R equi were commonly recovered from soil of horse breeding farms in central Kentucky, regardless of the status of foals with pneumonia attributable to R equi on each farm. The incidence of foals with pneumonia attributable to R equi can be expected to be higher at farms with a greater density of mares and foals.

Full access
in American Journal of Veterinary Research