Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Corey J. Fisher x
  • Refine by Access: All Content x
Clear All Modify Search



To evaluate the effects of a flotation vest (FV) and water flow rate (WFR) on limb kinematics of dogs swimming against a current.


7 (1 male and 6 female) healthy adult Siberian Huskies.


Dogs were habituated to swim with and without an FV beside an investigator in a continuous-flow pool against WFRs up to 2.9 km/h. During each of 4 experimental sessions in a repeated-measures study, markers were wrapped around the right carpus and tarsus, and a video was recorded while each dog swam with or without an FV for about 2 minutes at each of 7 WFRs between 0 and 2.9 km/h when the WFR was incrementally decreased or increased. Motion tracking software was used to measure stroke excursion and frequency.


Stroke excursion varied more than frequency among all dogs and in response to changes in experimental conditions. The male dog and 1 female dog were unable to complete the study. For the remaining 5 dogs across all experimental conditions, mean tarsus excursion was 30% that of the carpus. Mean total excursion (sum of the excursion-frequency products for the carpus and tarsus) decreased when an FV was worn and increased with WFR by 69% and 19% when WFR was incrementally increased and decreased, respectively.


In dogs, range of motion during swimming was greater for the carpus than tarsus, when an FV was not worn, and increased more with WFR when WFR was incrementally increased. Those factors should be considered during swimming-based rehabilitation.

Full access
in American Journal of Veterinary Research


Objective—To determine whether a mutation in the fibrillin 2 gene (FBN2) is associated with canine hip dysplasia (CHD) and osteoarthritis in dogs.

Animals—-1,551 dogs.

Procedures—Hip conformation was measured radiographically. The FBN2 was sequenced from genomic DNA of 21 Labrador Retrievers and 2 Greyhounds, and a haplotype in intron 30 of FBN2 was sequenced in 90 additional Labrador Retrievers and 143 dogs of 6 other breeds. Steady-state values of FBN2 mRNA and control genes were measured in hip joint tissues of fourteen 8-month-old Labrador Retriever–Greyhound crossbreeds.

Results—The Labrador Retrievers homozygous for a 10-bp deletion haplotype in intron 30 of FBN2 had significantly worse CHD as measured via higher distraction index and extended-hip joint radiograph score and a lower Norberg angle and dorsolateral subluxation score. Among 143 dogs of 6 other breeds, those homozygous for the same deletion haplotype also had significantly worse radiographic CHD. Among the 14 crossbred dogs, as the dorsolateral subluxation score decreased, the capsular FBN2 mRNA increased significantly. Those dogs with incipient hip joint osteoarthritis had significantly increased capsular FBN2 mRNA, compared with those dogs without osteoarthritis. Dogs homozygous for the FBN2 deletion haplotype had significantly less FBN2 mRNA in their femoral head articular cartilage.

Conclusions and Clinical Relevance—The FBN2 deletion haplotype was associated with CHD. Capsular gene expression of FBN2 was confounded by incipient secondary osteoarthritis in dysplastic hip joints. Genes influencing complex traits in dogs can be identified by genome-wide screening, fine mapping, and candidate gene screening.

Full access
in American Journal of Veterinary Research