Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Chantal A. Ragetly x
  • Biomechanics x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To identify gait characteristics during trotting on a treadmill in nonlame Labrador Retrievers presumed predisposed or not predisposed to cranial cruciate ligament disease (CCLD).

Animals—Clinically normal Labrador Retrievers presumed predisposed (n = 10) or not predisposed (7) to CCLD.

Procedures—The right hind limb of each dog was classified by use of a predictive score equation that combined tibial plateau angle and femoral anteversion angle as presumed predisposed (high score [> −1.5]) or not predisposed (low score [≤ −1.5]) to CCLD. Tarsal joint, stifle joint, and hip joint kinematics, net moments, and powers were computed.

Results—The stifle joint was held at a greater degree of flexion in limbs presumed predisposed to CCLD (130.9° vs 139.3°). More power was generated by muscles acting on the stifle joint in the early stance phase of limbs presumed to be predisposed to CCLD (2.93 vs 1.64 W/kg). The tarsal joint did not reach the same degree of extension in limbs presumed predisposed to CCLD, compared with that in limbs presumed not predisposed to CCLD (179.0° vs 161.0°). Velocity, stance time, vertical and craniocaudal forces, angular velocities, and net joint muscle moments did not differ between groups.

Conclusions and Clinical Relevance—Gait mechanics of dogs with high (> −1.5) and low (≤ −1.5) tibial plateau angle and femoral anteversion angle scores were characterized on a treadmill, which may help in the identification of dogs predisposed to CCLD.

Full access
in American Journal of Veterinary Research