Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: C. Wayne McIlwraith x
  • Bone, Joint, and Cartilage x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effects of exercise at an early age on tissues in the metacarpophalangeal joints of horses.

Animals—Twelve 18-month-old horses.

Procedures—All horses were pasture reared, but 6 horses had additional exercise starting at 3 weeks of age until 18 months of age. At that time, computed tomography, articular cartilage metabolism evaluation, and histologic assessments of synovial membrane, articular cartilage, and subchondral bone were performed.

Results—Exercised horses had fewer gross lesions, less articular cartilage matrix staining in the dorsal aspect of the condyle, greater bone fraction in the dorsolateral aspect of the condyle, and higher bone formation rate, compared with nonexercised horses.

Conclusions and Clinical Relevance—Exercise at a young age may be protective to joints, although more research is needed to characterize changes in articular cartilage matrix. Results suggested that exercise can be safely imposed at an early age.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate effects of extracorporeal shock wave therapy (ESWT) and polysulfated glycosaminoglycan treatment (PSGAGT) on subchondral bone (SCB), serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis.

Animals—24 healthy 2- to 3-year-old horses.

Procedures—An osteochondral fragment was created on the distal aspect of the radial carpal bone in 1 middle carpal joint of each horse. Horses were randomly allocated to receive local application of ESWT (days 14 and 28; n = 8), PSGAGT (IM, q 4 d for 28 days; 8), or a sham ESWT probe (placebo; days 14 and 28; 8). Serum biomarkers were measured every 7 days, and synovial fluid biomarkers were measured every 14 days. Bone density was measured by use of computed tomography on days 0 and 70, and microdamage and bone formation variables were compared among groups at the end of the study (day 70).

Results—There was no significant effect of ESWT or PSGAGT on any bone variable. Serum osteocalcin concentration was significantly greater in horses that received ESWT, compared with placebo-treated horses, and serum concentration of the C-terminal telopeptide of type I collagen was significantly higher in horses that received ESWT, compared with placebo- and PSGAG-treated horses. Concentrations of the synovial fluid epitope CS846 were significantly higher in joints with osteoarthritis treated with ESWT

Conclusions and Clinical Relevance—Treatment of osteoarthritis with ESWT had no effect on SCB but did induce increases in serum biomarkers indicative of bone remodeling. Treatment of osteoarthritis with PSGAG had no effect on SCB or biomarkers.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess clinical, biochemical, and histologic effects of polysulfated glycosaminoglycan (PSGAG) or sodium hyaluronan administered intra-articularly in treatment of horses with experimentally induced osteoarthritis.

Animals—24 horses.

Procedures—Osteoarthritis was induced arthroscopically in 1 middle carpal joint of all horses. Eight horses received hyaluronan (20 mg) and amikacin (125 mg) intra-articularly on study days 14, 21, and 28. Eight horses received PSGAG (250 mg) and amikacin (125 mg) intra-articularly on study days 14, 21, and 28. Eight control horses received 2 mL of saline (0.9% NaCl) solution and amikacin (125 mg) intra-articularly on study days 14, 21, and 28. Clinical, radiographic, synovial fluid analysis, gross, histologic, histochemical, and biochemical findings were evaluated.

Results—No adverse treatment-related events were detected. Induced osteoarthritis caused a substantial change in lameness, response to flexion, joint effusion, and radiographic findings, and of these, synovial fluid effusion was reduced with PSGAG, compared with control horses. No changes in clinical signs were seen with PSGAG or hyaluronan, compared with control horses. Histologically, the degree of synovial membrane vascularity and subintimal fibrosis was significantly reduced with PSGAG treatment, compared with controls. Histologically, significantly less fibrillation was seen with hyaluronan treatment, compared with controls.

Conclusions and Clinical Relevance—Results indicated that PSGAG and hyaluronan had beneficial disease-modifying effects and are viable therapeutic options for osteoarthritis in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the clinical, biochemical, and histologic effects of extracorporeal shock wave therapy (ESWT) in the treatment of horses with experimentally induced osteoarthritis (OA).

Animals—Twenty-four 2- to 3-year-old horses without evidence of lameness.

Procedures—OA was induced arthroscopically in 1 middle carpal joint of each horse. Fourteen days after induction of OA, horses were treated with a sham ESWT probe (placebo; n = 8), polysulfated glycosaminoglycan (PSGAG) administered IM every 4 days for 28 days as a positive control treatment (8), or ESWT administered on days 14 and 28 with a focused shock wave unit (8). Evaluations included clinical assessments of degree of lameness every 2 weeks and weekly synovial fluid analyses. Horses were euthanized 70 days after induction of OA, and gross pathologic and histologic examinations of cartilage and synovial membrane specimens were performed at necropsy. A generalized linear mixed model was used to compare outcomes among treatment groups.

Results—No adverse treatment-related events were detected in any horse. The degree of lameness in horses treated with ESWT improved significantly, compared with the degree of lameness in placebo- or PSGAG-treated horses. No disease-modifying effects were evident in results for synovial fluid, synovial membranes, or cartilage from the ESWT- or PSGAG-treated horses.

Conclusions and Clinical Relevance—Although a disease-modifying effect of ESWT was not detected, the significant clinical effect of ESWT suggested that this modality should be considered for treatment of horses with OA in combination with another modality that does affect the disease process.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess clinical, radiographic, histologic, and biochemical effects of sodium pentosan polysulfate (NaPPS) administered IM for treatment of experimentally induced osteoarthritis in horses.

Animals—18 horses.

Procedures—Osteoarthritis was induced arthroscopically in 1 middle carpal joint of all horses. Nine horses received NaPPS (3 mg/kg, IM) on study days 15, 22, 29, and 36. Nine control horses received the same volume of saline (0.9% NaCl) solution IM on study days 15, 22, 29, and 36. Clinical, radiographic, gross, histologic, histochemical, and biochemical findings as well as findings of synovial fluid analysis were evaluated.

Results—No adverse treatment-related events were detected. Induced osteoarthritis caused a substantial increase in lameness, response to flexion, joint effusion, radiographic findings, synovial membrane inflammation, and articular cartilage fibrillation. Articular cartilage fibrillation was substantially reduced by NaPPS treatment, and concentrations of chondroitin sulfate 846 epitope were significantly increased in the synovial fluid of osteoarthritic and nonosteoarthritic joints of treated horses.

Conclusions and Clinical Relevance—Results indicated that NaPPS has some beneficial disease-modifying effects and may be a therapeutic option for osteoarthritis in horses.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate the efficacy of IV administration of a product containing hyaluronan, sodium chondroitin sulfate, and N-acetyl-d-glucosamine for prevention or treatment of osteoarthritis in horses.

ANIMALS 32 healthy 2- to 5-year-old horses.

PROCEDURES The study involved 2 portions. To evaluate prophylactic efficacy of the test product, horses received 5 mL of the product (n = 8) or saline (0.9% NaCl) solution (8; placebo) IV every fifth day, starting on day 0 (when osteoarthritis was induced in the middle carpal joint of 1 forelimb) and ending on day 70. To evaluate treatment efficacy, horses received either the product or placebo (n = 8/treatment) on days 16, 23, 30, 37, and 44 after osteoarthritis induction. Clinical, diagnostic imaging, synovial fluid, gross anatomic, and histologic evaluations and other tests were performed. Results of each study portion were compared between treatment groups.

RESULTS Limb flexion and radiographic findings were significantly worse for horses that received the test product in the prophylactic efficacy portion than for placebo-treated horses or product-treated horses in the treatment efficacy portion. In the prophylactic efficacy portion, significantly less articular cartilage erosion was identified in product-treated versus placebo-treated horses. In the treatment efficacy portion, joints of product-treated horses had a greater degree of bone edema identified via MRI than did joints of placebo-treated horses but fewer microscopic articular cartilage abnormalities.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that caution should be used when administering the evaluated product IV to horses, particularly when administering it prophylactically, as it may have no benefit or may even cause harm.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate the influence of early conditioning exercise on the development of gross cartilage defects and swelling behavior of cartilage extracellular matrix (ECM) in the midcarpal joint of horses.

Animals—12 Thoroughbreds.

Procedures—6 horses underwent early conditioning exercise from birth to 18 months of age (CONDEX group), and 6 horses were used as control animals (PASTEX group). The horses were euthanized at 18 months of age, and the midcarpal joints were harvested. Gross defects of the cartilage surface were classified and mapped. Opposing surfaces of the third and radial carpal bones were used to quantify swelling behavior of the cartilage ECM.

Results—A wide range of gross defects was detected in the cartilage on the opposing surfaces of the bones of the midcarpal joint; however, there was no significant difference between the CONDEX and PASTEX groups. Similarly, no significant difference in swelling behavior of the cartilage ECM was evident between the CONDEX and PASTEX groups.

Conclusions and Clinical Relevance—In the study reported here, we did not detect negative influences of early conditioning exercise on the prevalence of gross defects in cartilage of the midcarpal joint or the quality of the cartilage ECM as defined by swelling behavior. These results suggested that early conditioning exercise may be used without negative consequences for the midcarpal joint and the cartilage ECM of the third and radial carpal bones.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To describe and measure histologic features of midcarpal joint cartilage defects in Thoroughbreds and evaluate the influence of early conditioning exercise on defect development.

Sample—24 midcarpal joints from twelve 18-month-old Thoroughbreds.

Procedures—Midcarpal joints from 12 horses (6 exercised spontaneously at pasture only and 6 given additional conditioning exercise beginning at a mean age of 3 weeks were evaluated. Gross cartilage defects were assessed histologically. Third and radial carpal bones were categorized with regard to the presence or absence of calcified cartilage (CC) abnormalities at the dorsoproximal and dorsodistal articular surfaces, respectively; histomorphometric assessment and statistical analysis were conducted for the third carpal bone.

Results—Number and severity of defects did not appear different between exercise groups. Nine third or radial carpal bones had thickened CC with microcracks, matrix and osteochondral junction changes, and increased vascularity, without histologic changes in the hyaline cartilage. Third carpal bones with CC abnormalities had significantly thicker CC (452 vs 228 μm) than did those without CC abnormalities in the evaluated region. However, in the same region, there were no significant differences in hyaline cartilage thickness (681 vs 603 μm), vascular channel area in the subchondral bone (624,894 vs 490,320 μm2), or number of vascular channels (15.9 vs 18.0).

Conclusions and Clinical Relevance—Early exercise did not appear to influence the distribution or severity of cartilage defects in the midcarpal joint. Calcified cartilage abnormalities beneath the undisrupted hyaline cartilage in the dorsoproximal aspect of the third carpal bone may represent the first changes in the pathogenesis of midcarpal osteochondral disease.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate histomorphometric changes in the cartilage and subchondral bone of the third carpal bone associated with conditioning exercise in young Thoroughbreds.

Animals—Nine 18-month-old Thoroughbreds.

Procedures—Both third carpal bones of 9 horses (4 exercised spontaneously at pasture only and 5 given additional conditioning exercise beginning at a mean age of 3 weeks) were evaluated. Histomorphometric variables (hyaline and calcified cartilage thickness and collagen orientation; vascular channel area, number, and orientation; and osteochondral junction rugosity) of the third carpal bone, sampled at 4 dorsopalmar sites in the radial facet, were compared between the exercised and nonexercised groups.

Results—The vascular channel area measured at the 4 dorsopalmar sites was larger in the exercised group than in the control group, but none of the variables were significantly different between groups. Both groups had significant site-specific variations in all measured variables. Most importantly, the vascular channel area was highest in the most dorsal aspect.

Conclusions and Clinical Relevance—Results suggested that the mild exercise imposed in both groups during the developmental period appeared to be associated with an increase in the vascular channel area beneath the calcified cartilage layer in the third carpal bone. This increased vascular channel area could also be associated with high stress in the dorsal aspect of the radial facet, a region that is known to be vulnerable to osteochondral fragmentation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the clinical, biochemical, and histologic effects of topically administered diclofenac liposomal cream (DLC) in the treatment of horses with experimentally induced osteoarthritis.

Animals—24 horses.

Procedures—Osteoarthritis was induced arthroscopically in 1 middle carpal joint of all horses. Eight horses treated with DLC were given 7.3 g twice daily via topical application. Eight horses treated with phenylbutazone were given 2 g orally once daily. Eight control horses received no treatment. Evaluations included clinical, radiographic, magnetic reso-nance imaging, synovial fluid, gross, and histologic examinations as well as histochemical and biochemical analyses.

Results—No adverse treatment-related events were detected. Horses that were treated with DLC or phenylbutazone had significant clinical improvement of lameness, unlike the control horses. Treatment with DLC induced significant improvement in staining and total articular glycosaminoglycan content, compared with no treatment. Treatment with phen-ylbutazone induced significant reduction in synovial fluid prostaglandin E2 concentration, compared with DLC and no treatment. Treatment with DLC induced significantly less radial carpal bone sclerosis and overall gross cartilage erosion, compared with phenylbutazone.

Conclusions and Clinical Relevance—Results indicated that DLC had both clinical sign–modifying and disease-modifying effects. Only clinical sign–modifying effects were detected in association with phenylbutazone administration. Treatment with DLC had significant beneficial effects, compared with phenylbutazone, and no detrimental effects. Results suggested that DLC is a viable therapeutic option for horses with osteoarthritis.

Full access
in American Journal of Veterinary Research