Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Anne M. Vachon x
  • Refine by Access: All Content x
Clear All Modify Search

SUMMARY

Periosteal autografts were used for repair of large osteochondral defects in 10 horses aged 2 to 3 years old. In each horse, osteochondral defects measuring 1.0 × 1.0 cm2 were induced bilaterally on the distal articular surface of each radial carpal bone. Control and experimental defects were drilled. Periosteum was harvested from the proximal portion of the tibia and was glued into the principal defects, using a fibrin adhesive. Control defects were glued, but were not grafted.

Sixteen weeks after the grafting procedure, the quality of the repair tissue of control and grafted defects was assessed biochemically. Total collagen content and the proportion of type-II collagen were determined. Galactosamine and glucosamine contents also were determined. From these measurements, contents of chondroitin and keratan sulfate and total glycosaminoglycan, and galactosamine-to-glucosamine ratio were calculated. All biochemical variables were compared with those of normal equine articular cartilage taken from the same site in another group of clinically normal horses. Total collagen content was determined on the basis of 4-hydroxyproline content, using a colorimetric method. The proportions of collagen types I and II in the repair tissue were assessed by electrophoresis of their cyanogen bromide-cleaved peptides on sodium dodecyl sulfate slab gels. Peptide ratios were computed and compared with those of standard mixtures of type-I and type-II collagens. Galactosamine and glucosamine contents were determined by use of ion chromatography.

In general, the biochemical composition of repair tissue of grafted and nongrafted defects was similar, but clearly differed from that of normal articular cartilage. Total glycosaminoglycan content, galactosamine and glucosamine contents, and galactosamine-to-glucosamine ratio of grafted and nongrafted defects were all significantly (P < 0.05) less than corresponding values in normal equine articular cartilage. By contrast, total collagen content of neocartilaginous tissues of grafted and nongrafted defects was greater than that of normal articular cartilage, although the difference was not significant. The proportion of type-I and type-II collagens in repair tissue in grafted and nongrafted defects was 70 and 30%, respectively. The fibrous nature of the repair tissue reported in a companion morphologic and histochemical study was substantiated by the biochemical results. We concluded that use of periosteal autografts did not improve the healing of osteochondral defects.

Free access
in American Journal of Veterinary Research

SUMMARY

The use of periosteal autografts to resurface osteochondral defects was investigated in 10 horses (2 to 3 years old), and the repair tissue was characterized morphologically. Middle carpal joint arthrotomies were made, and osteochondral defects were induced bilaterally on the distal articular surface of each radial carpal bone. Each defect measured approximatively 1 cm2 and extended 3 mm into the subchondral bone plate. Residual subchondral bone plate of control and principal defects was perforated by drilling. A sterile fibrin adhesive was made by mixing a fibrinogen component and a thrombin component. A periosteal autograft was harvested from the proximal portion of the tibia and was glued onto the recipient osseous surface, with its cambium facing the joint cavity. Control defects were glued, but not grafted. Horses were walked 1 hour daily on a walker, starting at postoperative week 7 and continuing for 9 weeks. Sixteen weeks after the grafting procedure was done, carpal radiography was performed, after which horses were euthanatized. Quality of repair tissue of control and grafted defects was evaluated and compared grossly, histologically, and histochemically. Using a reticule, the proportions of various repair tissue types filling each defect were quantitated.

Seven weeks after the grafting procedure was done, bilateral arthroscopy revealed synovial adhesions and marginal pannus formation in control and grafted defects. None of the autografts was found floating unattached within the respective middle carpal joints. At 16 weeks, the gross appearance of most grafted and nongrafted defects was similar, and repair was dominated by a fibrous pannus. In 4 grafted defects, bone had formed either concentrically within the defect or eccentrically in the fibrous adhesions between the defect and the joint margin. Histologically, all grafted and nongrafted defects were repaired similarly by infiltration of a mixture of fibrous tissue, fibrocartilage, and bone. Fibrous tissue was the predominant tissue in most defects and its mean proportion was 56 and 59% in the grafted and nongrafted defects, respectively. Fibrocartilaginous tissue in the deeper layers approximated 20%, and woven bone at the base of the defect was 20% in all defects. Histochemically, difference in staining for proteoglycans was not observed between grafted and nongrafted defects. Little remaining original periosteal graft tissue was evident at the defect sites. The only distinguishing feature of grafted defects was the presence of islands of bone formation either at the defect site (n = 2 horses), or in somewhat dorsally displaced tissue that was incorporated in fibrous adhesions (n = 2 horses). It was concluded that use of periosteal autografts did not improve the healing of osteochondral defects of the distal portion of the radial carpal bone. The repair tissue produced in grafted and nongrafted defects was similar and was principally fibrous in nature.

Free access
in American Journal of Veterinary Research

Summary

Using biodegradable pins, sternal cartilage autografts were fixed into osteochondral defects of the distal radial carpal bone in ten 2 to 3-year-old horses. The defects measured 1 cm2 at the surface and were 4 mm deep. Control osteochondral defects of contralateral carpi were not grafted. After confinement for 7 weeks, horses were walked 1 hour daily on a walker for an additional 9 weeks. Horses were euthanatized at 16 weeks. Half of the repair tissue was processed for histologic and histochemical (H&E and safranin-O fast green) examinations. The other half was used for the following biochemical analyses: type-I and type-II collagen contents, total glycosaminoglycan content, and galactosamine-to-glucosamine ratio. On histologic examination, the repair tissue in the grafted defects consisted of hyaline-like cartilage. Repair tissue in the nongrafted defects consisted of fibrocartilaginous tissue, with fibrous tissue in surface layers. On biochemical analysis, repair tissue of grafted defects was composed predominantly of type-II collagen; repair tissue of nongrafted defects was composed of type-I collagen. Total glycosaminoglycan content of repair tissue of grafted defects was similar to that of normal articular cartilage. Total glycosaminoglycan content of nongrafted defects was 62% of that of normal articular cartilage (P < 0.05). Repair tissue of all defects was characterized by galactosamine-to-glucosamine ratio significantly (P < 0.05) higher than that of normal articular cartilage. These results at 16 weeks after grafting indicate that sternal cartilage may potentially constitute a suitable substitute for articular cartilage in large osteochondral defects of horses.

Free access
in American Journal of Veterinary Research