Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Anna M. Firshman x
- Musculoskeletal System x
- Refine by Access: All Content x
Abstract
OBJECTIVE To compare effects of training on conventional and underwater treadmills on fiber properties and metabolic responses of the superficial digital flexor (SDF) and gluteal muscles to high-speed exercise in horses.
SAMPLE 6 unconditioned Quarter Horse–type horses.
PROCEDURES 6 horses were walked on underwater and conventional treadmills for 5 d/wk (maximum, 40 min/d) for 8 weeks in a randomized crossover design (60-day detraining period). Horses underwent a standardized exercise test (SET) at high speed before and after training. Analyte concentrations and fiber characteristics were measured in muscle biopsy specimens obtained from horses before and after each SET.
RESULTS Lactate concentration increased 2- to 3-fold in SDF and gluteal muscle after SETs. No training effect was identified on muscle fiber type composition, type II fiber diameter, muscle analyte concentrations, blood lactate concentration, or heart rate responses. Maximum diameters of type I fibers decreased significantly in gluteal muscle with conventional treadmill training and decreased in SDF muscle with both types of training, with maximum diameters greater for horses after underwater versus conventional treadmill training. No change was identified in minimum fiber diameters.
CONCLUSIONS AND CLINICAL RELEVANCE SETs involving near-maximal exertion resulted in an anaerobic response in SDF and gluteal muscles of horses. Eight weeks of conventional or underwater treadmill training resulted in minor changes in type I muscle fiber sizes, with no effect on muscle metabolic or heart rate responses to SETs. After rehabilitation involving underwater treadmills, training at progressing speeds is recommended for horses to develop the required fitness for speed work.
Abstract
Objective—To determine insulin sensitivity, proportions of muscle fiber types, and activities of glycogenolytic and glycolytic enzymes in Belgians with and without polysaccharide storage myopathy (PSSM).
Animals—10 Quarter Horses (QHs) and 103 Belgians in which PSSM status had been determined.
Procedures—To determine insulin sensitivity, a hyperinsulinemic euglycemic clamp (HEC) technique was used in 5 Belgians with PSSM and 5 Belgians without PSSM. Insulin was infused IV at 3 mU/min/kg for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. An IV infusion of glucose was administered to maintain blood glucose concentration at 100 mg/dL. Activities of glycogenolytic and glycolytic enzymes were assessed in snap-frozen biopsy specimens of gluteus medius muscle obtained from 4 Belgians with PSSM and 5 Belgians without PSSM. Percentages of type 1, 2a, and 2b muscle fibers were determined via evaluation of ≥ 250 muscle fibers in biopsy specimens obtained from each Belgian used in the aforementioned studies and from 10 QHs (5 with PSSM and 5 without PSSM).
Results—Belgians with and without PSSM were not significantly different with respect to whole-body insulin sensitivity, muscle activities of glycogenolytic and glycolytic enzymes, or proportions of muscle fiber types. However, Belgians had an increased proportion of type 2a and decreased proportion of type 2b muscle fibers, compared with proportions in QHs, regardless of PSSM status.
Conclusions and Clinical Relevance—PSSM in Belgians may be attributable to excessive glycogen synthesis rather than decreased glycogen utilization or enhanced glucose uptake into muscle cells.