Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Amie Koenig x
  • Clinical Pathology x
  • Refine by Access: All Content x
Clear All Modify Search



To determine effects of PCV on blood glucose (BG) concentration measurements obtained with a human portable blood glucometer (HPBG) and a veterinary portable blood glucometer (VPBG) on canine (cVPBG) and feline (fVPBG) settings (test methods) when used in rabbits and to develop correction formulas to mitigate effects of PCV on such measurements.


48 resuspended blood samples with known PVCs (range, 0% [plasma] to 92% [plasma and packed RBCs]) from 6 healthy research rabbits (experimental sample set) and 252 historic measurements of BG concentration and PCV in 84 client-owned rabbits evaluated at a veterinary hospital (validation data set).


Duplicate measurements of BG concentration with each test method and of PCV were obtained for each sample in the experimental sample set, and the mean results for each variable for each test method and sample were compared with results from a clinical laboratory analyzer (reference method) used to determine the true BG concentration for each sample. Mean ± SD differences in measurements between the reference and test methods were calculated. Linear regression and modified Clarke error grid analysis were used to develop correction formulas for the test methods given known PCVs, and these formulas were evaluated on the validation data set with linear regression and a modified Clarke error grid.


Blood glucose concentrations were falsely low for cVPBG and fVPBG used on samples with PCV < 31% and were falsely high for all test methods used on samples with PCV > 43%. Compared with original measurements, formula-corrected measurements overall had better agreement with reference method measurements for the experimental sample set; however, only the formula-corrected HPBG measurements had improved agreement for the validation data set.


Findings indicated that, in rabbits, HPBG measurements had improved accuracy with the use of the correction formula HPBG measurement of BG concentration + ([0.75 × PCV] − 15); however, the correction formulas did not improve the accuracy of VPBG measurements, and we believe that neither the cVPBG nor fVPBG should be used in rabbits.

Full access
in American Journal of Veterinary Research


Objective—To evaluate the pharmacodynamic effects of dalteparin in dogs by means of viscoelastic coagulation monitoring with a thromboelastograph and a dynamic viscoelastic coagulometer.

Animals—6 healthy adult mixed-breed dogs.

Procedures—Dalteparin (175 U/kg, SC, q 12 h) was administered for 4 days (days 1 through 4). Viscoelastic coagulation monitoring was performed hourly on the first and last days of treatment and included intermittent measurement of anti–activated coagulation factor X activity (AXA).

Results—Dalteparin administration resulted in progressive hypocoagulability. On both day 1 and 4, activated clotting time and clot rate for the dynamic viscoelastic coagulometer differed significantly from baseline values, whereas the platelet function parameter did not change on day 1 but did on day 4. The R (reaction time), time from reaction time until the amplitude of the thromboelastography tracing is 20 mm, α-angle, and maximum amplitude differed from baseline values on days 1 and 4, although many thromboelastographic variables were not determined. The AXA was increased from baseline values at 3 and 6 hours after administration of the dalteparin injection on days 1 and 4, and all dogs had AXA values between 0.5 and 1.0 U/mL at 2 and 4 hours after administration. The AXA correlated well with activated clotting time (r = 0.761) and with R (r = 0.810), when values were available. Thromboelastography could not be used to distinguish AXA > 0.7 U/mL.

Conclusions and Clinical Relevance—Viscoelastic coagulation monitoring with strong coagulation activators may be used to monitor treatment with dalteparin in healthy dogs.

Full access
in American Journal of Veterinary Research