Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Alicia L Bertone x
  • Bone, Joint, and Cartilage x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To investigate effects of hyaluronic acid (HA) or HA combined with chondroitin sulfate (CS) and N-acetyl-d-glucosamine (NAG) by use of a lipopolysaccharide (LPS) in vitro method.

SAMPLE Monolayer cultures of synovial cells from 4 adult horses.

PROCEDURES Synovial cell cultures were untreated or treated with HA alone or HA-CS-NAG for 24 hours, subsequently unchallenged or challenge-exposed with 2 LPS concentrations (20 and 50 ng/mL) for 2 hours, and retreated with HA or HA-CS-NAG for another 24 hours. Cellular morphology of cultures was evaluated at 0, 24 (before LPS), 26 (after LPS), and 50 (24 hours after end of LPS) hours. At 50 hours, cell number and viability and prostaglandin (PG) E2, interleukin (IL)-6, matrix metalloproteinase (MMP)-3, and cyclooxygenase (COX)-2 production were measured.

RESULTS LPS challenge exposure induced a significant loss of characteristic synovial cell morphology, decrease in cell viability, and increases in concentrations of PGE2, IL-6, MMP-3, and COX-2. Cells treated with HA or HA-CS-NAG had significantly better viability and morphology scores and lower concentrations of PGE2, MMP-3, IL-6, and COX-2 than untreated LPS challenge-exposed cells. Cells treated with HA had significantly better morphology scores at 50 hours than cells treated with HA-CS-NAG. Cells treated with HA-CS-NAG had significantly superior suppression of LPS-induced production of PGE2, IL-6, and MMP-3 than cells treated with HA alone.

CONCLUSIONS AND CLINICAL RELEVANCE HA and HA-CS-NAG protected synovial cells from the effects of LPS. Treatment with HA-CS-NAG had the greatest anti-inflammatory effect. These results supported the protective potential of HA and HA-CS-NAG treatments.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of various concentrations of retinoic acid (RA) or a synthetic RA receptor antagonist (LE135) on equine chondrocytes or bone marrow—derived equine mesenchymal stem cells (BMDMSCs) in monolayer cultures.

Sample—Articular cartilage and BMDMSCs from 5 clinically normal horses.

Procedures—Monolayers of chondrocytes cultured in standard media and of BMDMSCs cultured in chondrogenic media were treated with RA at concentrations of 0, 0.1, 1, or 10μM or LE135 at concentrations of 0, 0.1, 1, or 10μM on day 0. On days 7 and 14, samples were analyzed for DNA concentration, chondrocyte morphology or features consistent with chondrogenesis (ie, chondral morphology [scored from 0 to 4]), and gene expression of collagen type Ia (CI), collagen type II (CII), and aggrecan.

Results—Chondrocytes treated with RA had more mature chondral morphology (range of median scores, 3.0 to 4.0) than did untreated controls (range of median scores, 0.5 to 0.5). Chondrocytes treated with LE135 did not sustain chondrocyte morphology. All BMDMSCs had evidence of chondral morphology or high CII:CI ratio. Retinoic acid (1 or 10μM) or LE135 (10μM) treatment decreased DNA content of BMDMSC cultures. At 0.1 and 1μM concentrations, LE135 weakly but significantly increased chondral morphology scores, compared with untreated controls, but lack of aggrecan expression and lack of increased CII:CI ratio, compared with that of controls, did not affect chondrogenesis.

Conclusions and Clinical Relevance—RA promoted maturation and hypertrophy in chondrocytes but not BMDMSCs in monolayer cultures. Deficiency or blockade of RA may prevent hypertrophy and maturation of differentiated chondrocytes.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of triamcinolone acetonide (TA), sodium hyaluronate (HA), amikacin sulfate (AS), and mepivacaine hydrochloride (MC) on articular cartilage morphology and matrix composition in lipopolysaccharide (LPS)-challenged and unchallenged equine articular cartilage explants.

Sample Population—96 articular cartilage explants from 4 femoropatellar joints of 2 adult horses.

Procedures—Articular cartilage explants were challenged with LPS (100 ng/mL) or unchallenged for 48 hours, then treated with TA, HA, AS, and MC alone or in combination for 96 hours or left untreated. Cartilage extracts were analyzed for glycosaminoglycan (GAG) content by dimethyl-methylene blue assay (ng/mg of dry wt). Histomorphometric quantification of total lacunae, empty lacunae, and lacunae with pyknotic nuclei was recorded for superficial, middle, and deep cartilage zones.

Results—LPS induced a significant increase in pyknotic nuclei and empty lacunae. Treatment with TA or HA significantly decreased empty lacunae (TA and HA), compared with groups without TA or HA, and significantly decreased empty lacunae of LPS-challenged explants, compared with untreated explants. Treatment with AS or MC significantly increased empty lacunae in unchallenged explants, and these effects were attenuated by TA. Treatment with MC significantly increased empty lacunae and pyknotic nuclei and, in combination with LPS, could not be attenuated by TA. Content of GAG did not differ between unchallenged and LPS-challenged explants or among treatments.

Conclusions and Clinical Relevance—Treatment with TA or HA supported chondrocyte morphology in culture and protected chondrocytes from toxic effects exerted by LPS, AS, and MC.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify patterns and correlations of gross, histologic, and gene expression characteristics of articular cartilage from horses with osteoarthritis.

Animals—10 clinically normal horses and 11 horses with osteoarthritis of the metacarpal condyles.

Procedures—Metacarpophalangeal joints were opened and digitally photographed, and gross lesions were scored and quantified. Representative cartilage specimens were stained for histologic scoring. Total RNA from dorsal and palmar articular surfaces was processed on an equine gene expression microarray.

Results—Histologic scores were greater in both regions of osteoarthritic joints, compared with corresponding regions in control joints. Cartilage from the palmar aspect of diseased joints had the highest histologic scores of osteoarthritic sites or of either region in control joints. A different set of genes for dorsal and palmar osteoarthritis was identified for high and low gene expression. Articular cartilage from the dorsal region had surface fraying and greater expression of genes coding for collagen matrix components and proteins with anti-apoptotic function, compared with control specimens. Articular cartilage from the palmar region had greater fraying, deep fissures, and less expression of genes coding for glycosaminoglycan matrix formation and proteins with anti-apoptotic function, compared with cartilage from disease-free joints and the dorsal aspect of affected joints.

Conclusions and Clinical Relevance—Metacarpal condyles of horses with naturally occurring osteoarthritis had an identifiable and regional gene expression signature with typical morphologic features.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate host cell permissiveness and cytotoxic effects of recombinant and modified adenoviral vectors in equine chondrocytes, synovial cells, and bone marrow–derived mesenchymal stem cells (BMD-MSCs).

Sample Population—Articular cartilage, synovium, and bone marrow from 15 adult horses.

Procedures—Equine chondrocytes, synovial cells, and BMD-MSCs and human carcinoma (HeLa) cells were cultured and infected with an E-1–deficient adenovirus vector encoding the β-galactosidase gene or the green fluorescent protein gene (Ad-GFP) and with a modified E-1–deficient vector with the arg-gly-asp capsid peptide insertion and containing the GFP gene (Ad-RGD-GFP). Percentages of transduced cells, total and transduced cell counts, and cell viability were assessed 2 and 7 days after infection.

Results—Permissiveness to adenoviral vector infection was significantly different among cell types and was ranked in decreasing order as follows: HeLa cells > BMD-MSCs > chondrocytes > synovial cells. Morphologic signs of cytotoxicity were evident in HeLa cells but not in equine cells. Numbers of transduced cells decreased by day 7 in all cell types except equine BMD-MSCs. Transduction efficiency was not significantly different between the Ad-GFP and Ad-RGD-GFP vectors.

Conclusion and Clinical Relevance—Sufficient gene transfer may be achieved by use of an adenovirus vector in equine cells. High vector doses can be used in equine cells because of relative resistance to cytotoxic effects in those cells. Greater permissiveness and sustained expression of transgenes in BMD-MSCs make them a preferential cell target for gene therapy in horses.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate 4 methods for generating decellularized equine synovial extracellular matrix.

SAMPLE Villous synovium harvested from the femoropatellar and medial femorotibial joints of 4 healthy adult horses < 7 years of age. Synovial samples were frozen (−80°C) until used.

PROCEDURES Synovial samples were thawed and left untreated (control) or decellularized with 1 of 4 methods (15 samples/horse/method): incubation in 0.1% peracetic acid (PAA), incubation in 0.1% PAA twice, incubation in 1% Triton X-100 followed by incubation in DNase, and incubation in 2M NaCl followed by incubation in DNase. Control and decellularized samples were examined for residual cells, villous integrity, and collagen structure and integrity by means of histologic examination and scanning electron microscopy; cell viability was evaluated by means of culture and exclusion staining. Decellularization efficiency was assessed by testing for DNA content and DNA fragment size.

RESULTS Incubation in PAA once preserved the synovial villous architecture, but resulted in high DNA content and retention of large (> 25,000 base pair) DNA fragments. Incubation in Triton and incubation in NaCl resulted in low DNA content and short (< 200 base pair) DNA fragments, but destroyed the synovial villous architecture. Incubation in PAA twice resulted in low DNA content and short DNA fragments while retaining the synovial villous architecture.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that of the methods evaluated, incubation in 0.1% PAA twice was the best method for generating decellularized equine synovial extracellular matrix.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the efficiency of a novel point-of-care gravitational marrow separator and bone marrow aspiration needle for concentrated bone marrow production and bone marrow-derived mesenchymal stem cell (MSC) separation and assess the effect of repeated bone marrow collections in horses.

Animals—8 healthy adult horses.

Procedures—Bone marrow aspiration was performed twice (1 month apart) from sternebral bodies with a standard or prototype multidirectional needle. Concentrated bone marrow was obtained by gravitational marrow separation and evaluated for WBC and platelet counts, automated and cytomorphologic cell differential counts, MSCs, and cell viability.

Results—Concentrated bone marrow samples obtained with the marrow separator had 5- to 19-fold bone marrow-derived MSC, WBC, and platelet counts, compared with original bone marrow samples. Use of a multidirectional needle increased the frequency of obtaining MSC-richer concentrated bone marrow. Repeating bone marrow aspiration at 1 month yielded greater MSC numbers but slightly lower cell viability after processing.

Conclusions and Clinical Relevance—The gravitational bone marrow separator and multidirectional needle were used to effectively harvest bone marrow and improve the quality of concentrated bone marrow. Comparable, or even greater, numbers of bone marrow-derived MSCs were collected by repeated bone marrow aspiration after a 1-month interval from the same aspiration sites. Use of the marrow separator and multidirectional bone marrow aspiration needle can facilitate a 1-step, point-of-care, nonlaboratory method to obtain concentrated bone marrow as a mixture of bone marrow-derived MSCs and growth factors from platelets and plasma.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare biodegradable magnesium phosphate cement (Mg-cement), calcium phosphate cement (Ca-cement), and no cement on bone repair, biocompatibility, and bone adhesive characteristics in vivo in horses.

Animals—8 clinically normal adulthorses.

Procedures—Triangular fragments (1-cm-long arms) were created by Y-shaped osteotomy of the second and fourth metatarsal bones (MTII and MTIV, respectively). Fragments were replaced in pairs to compare Mg-cement (MTII, n = 8; MTIV, 8) with Ca-cement (MTIV, 8) or with no cement (MTII, 8). Clinical and radiographic evaluations were performed for 7 weeks, at which time osteotomy sites were harvested for computed tomographic measurement of bone density and callus amount, 3-point mechanical testing, and histologic evaluation of healing pattern and biodegradation.

Results—All horses tolerated the procedure without clinical problems. Radiographically, Mg-cement secured fragments significantly closer to parent bone, compared with Ca-cement or no treatment. Callus amount and bone remodeling and healing were significantly greater with Mg-cement, compared with Ca-cement or no cement. Biomechanical testing results and callus density among treatments were not significantly different. Significantly greater woven bone was observed adjacent to the Mg-cement without foreign body reac-tion, compared with Ca-cement or no cement. The Mg-cement was not fully degraded and was still adhered to the fragment.

Conclusions and Clinical Relevance—Both bone cements were biocompatible in horses, and Mg-cementmay assistfracture repair by osteogenesis and fragmentstabilization. Fur ther studies are warranted on other applications and to define degradation characteristics.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate and correlate patterns of subchondral bone density and articular cartilage degeneration (derived by use of gross, histologic, and computed tomographic [CT] examinations) in equine third metacarpal condyles with and without osteoarthritis.

Sample Population—8 metacarpophalangeal (MCP) joints (n = 4 horses) without osteoarthritis and 6 osteoarthritis-affected MCP joints (4).

Procedures—Horses were euthanized. The third metacarpal condyles of the joints were examined grossly and via CT (3 slice images/condyle). For 6 condylar zones, mean bone density and pattern of density distribution were determined. Data for osteoarthritis-affected and control joints were compared. Histomorphometric point count analyses identified areas of bone density for comparison with CT density measurements.

Results—Osteoarthritis-affected condyles had heterogeneous subchondral bone with focal resorptive lesions and patterned sclerosis, whereas control condyles had symmetric bone density distribution. In osteoarthritis-affected condyles, bone density determined via gray scale image density analysis was greater (dorsal and medial pattern), compared with control condyles, and differed among zones because of resorption and sclerosis. With regard to bone density in osteoarthritis-affected condyles, histologic findings correlated with CT images, and bone lesions were significantly correlated with cartilage lesions.

Conclusions and Clinical Relevance—In horses, heterogeneous distribution and greater subchondral bone density were characteristic of osteoarthritis-affected condyles, compared with control condyles. Subchondral bone lesions correlated with overlying cartilage lesions in osteoarthritis-affected MCP joints. Identification of CT image characteristics appears to predict the presence of a cartilage lesion in MCP joints of horses with osteoarthritis.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare biomechanical strength, interface quality, and effects of bone healing in bone-implant interfaces that were untreated or treated with calcium phosphate cement (Ca-cement), magnesium phosphate cement (Mg-cement), or polymethylmethacrylate (PMMA) in horses.

Animals—6 adult horses.

Procedures—4 screw holes were created (day 0) in each third metacarpal and third metatarsal bone of 6 horses. In each bone, a unicortical screw was placed in each hole following application of Ca-cement, Mg-cement, PMMA, or no treatment (24 screw holes/treatment). Screws were inserted to 2.82 N m torque. Horses were euthanized and bones were harvested at day 5 (16 screw holes/treatment) or day 182 (8 screw holes/treatment). Radiography, biomechanical testing, histomorphometry, and micro–computed tomography were performed to characterize the bone-implant interfaces.

Results—Use of Mg-cement increased the peak torque to failure at bone-implant interfaces, compared with the effects of no treatment and Ca-cement, and increased interface toughness, compared with the effects of no treatment, Ca-cement, and PMMA. Histologically, there was 44% less Ca-cement and 69% less Mg-cement at the interfaces at day 182, compared with amounts present at day 5. Within screw threads, Ca-cement increased mineral density, compared with PMMA or no treatment. In the bone adjacent to the screw, Mg-cement increased mineral density, compared with PMMA or no treatment. One untreated and 1 Ca-cement–treated screw backed out after day 5.

Conclusions and Clinical Relevance—In horses, Mg-cement promoted bone-implant bonding and adjacent bone osteogenesis, which may reduce the risk of screw loosening.

Full access
in American Journal of Veterinary Research