Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Albert E. Jergens x
  • Clinical Pathology x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To measure serum calprotectin concentration in dogs with inflammatory bowel disease (IBD) before and after initiation of treatment and evaluate its correlation with a clinical scoring system (canine IBD activity index), serum canine C-reactive protein concentration, and severity of histopathologic changes.

Animals—34 dogs with idiopathic IBD and 139 healthy control dogs.

Procedures—From dogs with IBD, blood samples were collected immediately before (baseline) and 3 weeks after initiation of 1 of 2 treatments: prednisone (1 mg/kg, PO, q 12 h; n = 21) or a combination of prednisone and metronidazole (10 mg/kg, PO, q 12 h; 13). Blood samples were collected once from each of the control dogs. For all samples, serum calprotectin concentration was determined via radioimmunoassay.

Results—Mean serum calprotectin concentrations for dogs with IBD at baseline (431.1 μg/L) and 3 weeks after initiation of treatment (676.9 μg/L) were significantly higher, compared with that (219.4 μg/L) for control dogs, and were not significantly correlated with the canine IBD activity index, serum C-reactive protein concentration, or severity of histopathologic changes. The use of a serum calprotectin concentration of ≥ 296.0 μg/L as a cutoff had a sensitivity of 82.4% (95% confidence interval, 65.5% to 93.2%) and specificity of 68.4% (95% confidence interval, 59.9% to 76.0%) for distinguishing dogs with idiopathic IBD from healthy dogs.

Conclusions and Clinical Relevance—Serum calprotectin concentration may be a useful biomarker for the detection of inflammation in dogs, but the use of certain drugs (eg, glucocorticoids) appears to limit its clinical usefulness.

Full access
in American Journal of Veterinary Research


The effects of hypertonic saline solution (htss) combined with colloids on hemostatic analytes were studied in 15 dogs. The analytes evaluated included platelet counts, one-stage prothrombin time, activated partial thromboplastin time, von Willebrand's factor antigen (vWf:Ag), and buccal mucosa bleeding times. The dogs were anesthetized, and jugular phlebotomy was used to induce hypovolemia (mean arterial blood pressure = 50 mm of Hg). Treatment dogs (n = 12) were resuscitated by infusion (6 ml/kg of body weight) of 1 of 3 solutions: htss combined with 6% dextran 70, 6% hetastarch, or 10% pentastarch. The control dogs (n = 3) were autotransfused. Hemostatic analytes were evaluated prior to induction of hypovolemia (baseline) and then after resuscitation (after 30 minutes of sustained hypovolemia) at 0.25, 0.5, 1, 6 and 24 hours.

All treatment dogs responded rapidly and dramatically to resuscitation with hypertonic solutions. Clinically apparent hemostatic defects (epistaxis, petechiae, hematoma were not observed in any dog. All coagulation variables evaluated, with the exception of vWf:Ag, remained within reference ranges over the 24-hour period. The vWf:Ag values were not statistically different than values from control dogs, and actual values were only slightly lower than reference ranges. Significant (P ≤ 0.04) differences were detected for one-stage prothrombin time, but did not exceed reference ranges. The results of this study suggested that small volume htss/colloid solutions do not cause significant alterations in hemostatic analytes and should be considered for initial treatment of hypovolemic or hemorrhagic shock.

Free access
in American Journal of Veterinary Research