Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: Alan J. Nixon x
- Surgery x
- Refine by Access: All Content x
Abstract
Objective
To examine the site-specific and dose-dependent effects of insulin-like growth factor I (IGF-I) on normal equine tendon in vitro.
Samples
Superficial digital flexor tendon explants derived from a euthanatized 3-year-old horse.
Procedure
Explants in culture were treated with 0, 100, 250, or 500 ng of IGF-I/ml for 14 days with an end-stage radiolabel of 20 μCi of [3H]proline/ml or 5 μCi of [3H]thymidine/ml. The tendon tissues were then analyzed biochemically for hydroxyproline content by reverse-phase high-performance liquid chromatography, DNA content by fluorometry, and glycosaminoglycan content by the dimethylmethylene blue dye-binding assay. In addition, morphologic analysis of the explants comprised histologic examination, autoradiography, and immunohistochemistry.
Results
Hydroxyproline content was significantly increased in explants treated with 100 and 250 ng of IGF-I/ml. Additionally, the collagen synthetic rate, measured by incorporation of [3H]proline into hydroxyproline, was significantly increased for all treatment groups. On the basis of autoradiograms, fibroblast proliferation and collagen synthesis were predominantly confined to the endcap and adjacent endotenon of the explants. Enhanced immunoreactivity for type-I collagen, compared with type-III collagen, was evident in the treated explants, an observation supported by positive staining for type-I collagen with picrosirius red. Histologically, treated explants contained greater numbers of larger and more metabolically active fibroblasts, compared with untreated controls.
Conclusion
IGF-I enhances collagen synthesis in normal equine flexor tendon in a dose-dependent manner. IGF-I also exerts its primary effect on cell proliferation and collagen synthesis in the epitenon and adjacent endotenon and accompanying perivascular connective tissues, consistent with enhancement of intrinsic tendon metabolism.
Clinical Relevance
IGF-I may have a potential role in the treatment of tendinitis in horses. (Am J Vet Res 1997;58:103–109)
Summary
Equine articular chondrocytes were isolated from explant cartilage cultures by digestion in a 0.075% collagenase solution for 15 to 19 hours. Cartilage from late-term fetal and neonatal foals resulted in mean chondrocyte yield of 51.99 × 106 cells/g of cartilage (wet weight), compared with a yield of 17.83 × 106 cells/g for foals 3 to 12 months old. Propagation of chondrocytes in monolayer and 3-dimensional culture was accomplished, using Ham’s F-12 as the basal medium, with supplements of fetal bovine serum (10%), ascorbic acid, α-ketoglutarate, and l-glutamine. The medium was buffered with hepes, and penicillin and streptomycin were added for microorganism control. In primary monolayer cultures of freshly isolated chondrocytes, the population doubling time was approximately 6 days. Dedifferentiation of chondrocytes toward a more fibroblastic-appearing cell was observed after the fifth passage (subculture), but was hastened by lower cell-plating density. Chondrocytes were frozen for periods of up to 9 months, using 10% dimethyl sulfoxide as the cryoprotectant. Cell viability of late-term fetal and neonatal foal chondrocytes after storage at −196 C decreased from 86% at 3 weeks to 31% at 12 weeks. Viability of cells derived from older foals and young adult horses was considerably better than that of cells from neonatal foals. Frozen chondrocytes can be stored for extended periods and thawed for immediate implantation or can be sustained in vitro in monolayer or 3-dimensional culture. Such cultures would be suitable for cartilage resurfacing experiments or in vitro assessment of various pharmaceuticals.
Abstract
Objective
To compare chondrocyte proliferation and metabolism in three-dimensional fibrin cultures formed from polymerized autogenous fibrinogen with that of commercially manufactured fractionated fibrinogen.
Animals
Fibrinogen and chondrocytes for in vitro experimentation derived from 2 horses, ages 12 and 14 months, donated for reasons unrelated to skeletal or hematologic abnormalities.
Procedure
Fibrinogen was isolated from whole blood, using plasma cryoprecipitation and centrifugation, and fractionated fibrinogen was purchased. Each was mixed with 10 × 106 chondrocytes/0.5 ml of fibrinogen, and was polymerized by addition of 0.5 ml of calcium-activated thrombin. Thirty 1-ml fibrin-chondrocyte disks were formed from each fibrinogen source and cultured for 0 (n = 6), 7 (n = 12), or 14 (n = 12) days. Chondrocyte metabolism and cell proliferation in each fibrin type were objectively assessed by assays for total proteoglycan content, [35S]proteoglycan accumulation, proteoglycan monomer size, and total DNA. Cell morphology and cartilage-specific cell function was evaluated by routine histologic, alcian blue histochemical, type-II collagen immunohistochemical, and type-II collagen in situ hybridization methods.
Results
Histologic examination indicated better retention of chondrocyte morphology in autogenous composites. Autogenous fibrinogen also stimulated greater chondrocyte proliferation (DNA content increased 1.4-fold on day 14) and supported higher proteoglycan accumulation (increased 1.4-fold on day 14), compared with commercial, fractionated fibrinogen. Abundant intracellular type-II procollagen mRNA was detected in autogenous fibrin cultures by in situ hybridization, and translation was confirmed by extensive pericellular type-II collagen accumulation.
Conclusions
Autogenous fibrinogen has an inherent capacity to maintain chondrocyte phenotypic metabolism that is reduced or absent in commercially prepared fibrinogen. Enhanced, differentiated cell function may be useful for in vivo applications, but represents an added variable that may confound in vitro experiments, and should be considered when designing studies of chondrocyte function. (Am J Vet Res 1998;59:514–520)
Summary
Equine neonatal chondrocytes were cultured in three-dimensional fibrin matrices under conditions of immediate implantation or implantation following monolayer culture for 6 days, and 3 cell concentrations (1 × 105, 1 × 106, and 5 × 106 chondrocytes/ cm3). Equine fibrinogen was collected by cryoprecipitation and polymerized by use of activated bovine thrombin. The fibrin implants were harvested and analyzed histologically and biochemically at 3, 7, and 14 days after the chondrocytes were implanted in fibrin. The differentiation ratio (ratio of rounded, chondrocyte-like cells to stellate, fibroblast-like cells) was statistically higher for implants that received 5 × 106 precultured cells at all time periods than for implants that received 1 × 105 or 1 × 106 precultured cells. The differentiation ratio was statistically higher for implants that received 5 × 106 immediately implanted cells than for other implants at 7 days after implantation. At 14 days, implants that received 5 × 106 precultured chondrocytes had a higher differentiation ratio than did implants that received 5 × 106 chondrocytes that had not been precultured. Among implants that received precultured chondrocytes, total glycosaminoglycan and chondroitin sulfate content was lowest for implants that received only 1 × 105 cells. Among implants that received chondrocytes that had not been precultured, glycosaminoglycan content was not significantly different among the 3 cell concentrations, and chondroitin sulfate content was different only between implants that received 5 × 106 vs 1 × 106 cells. Only after the longest incubation period and at the highest cell concentration studied did preculturing of chondrocytes improve maintenance of phenotype. Preculturing did not appear to influence proteoglycan synthesis.
Abstract
Objective
To isolate mesenchymal stem cells from adult horses and determine specific monolayer culture conditions required to enhance biochemically and phenotypically defined chondrocytic differentiation.
Animals
2 adult horse bone marrow donors without skeletal or hematologic abnormalities.
Procedure
Bone marrow was aspirated from the sternebra, and mesenchymal stem cells were isolated by centrifugation and cultured in monolayers. Subcultures were established in 24-well plates on day 13. Culture medium was harvested every 2 days, and culture of 12 of the 24 wells was terminated on day 6 and of the remaining wells on day 12. Medium proteoglycan content was determined for all samples, and proteoglycan monomeric size was determined for pooled samples from days 2-6 and 8-12. Total nucleated cell numbers were determined at culture termination on days 6 and 12. Histologic, histochemical, and collagen immunohistochemical analyses of multiwell chamber slides harvested on day 6 or 12 were performed.
Results
Mesenchymal cells were an abundant cellular constituent of bone marrow aspirates, and separation of hematopoietic elements was achieved by centrifugation and delayed medium exchange. The remaining mesenchymal stem cells progressed from large, spindyloid, fibroblastic-appearing cells to a rounder shaped cell which formed colony plaques; isolated cells remained more spindyloid. Mesenchymal cell transformation toward a chondrocytic phenotype was verified by a shift in expression from collagen type I to type II, and an increase in quantity and molecular size of proteoglycans synthesized over time.
Conclusions
Mesenchymal stem cells obtained from adult horses have the capacity to undergo chondrogenic differentiation in monolayer cultures and may provide a locally recruitable or transplantable autogenous cell source for articular cartilage repair. (Am J Vet Res 1998;59:1182-1187).
SUMMARY
Cartilage resurfacing by chondrocyte transplantation, using porous collagen matrices as a vehicle to secure the cells in cartilage defects, has been used experimentally in animals. This in vitro study evaluated the temporal morphologic features and proteoglycan synthesis of chondrocyte-laden collagen matrices. Forty-two porous collagen disks were implanted with a minimum of 6 × 106 viable chondrocytes, covered by a polymerized collagen gel layer, and 6 disks were harvested after 0, 3, 7, 10, 14, 18, or 22 days of incubation in supplemented Ham's F12 medium at 37 C and 5% CO2. Histologic and histo-chemical evaluation of formalin-fixed segments of the cultured disks indicated that the chondrocytes proliferated in the implant, producing small groups and linear segments of cells by day 14. The collagen framework remained intact over the course of the study with thick areas attributable to depositions of matrix material after day 10. Alcian blue-stained matrix was evident in the pericellular region of chondrocytes in sections of disks harvested on days 14, 18, and 22.
Glycosaminoglycan (GAG) assay by dimethyl-methylene blue dye binding after papain digestion of the disk segments revealed negligible amounts of GAG at day 0. Significant (P ≤ 0.0001) increase in total GAG content was observed by day 3 (0.329 M-μg of disk) and further increases were observed until a plateau in GAG quantity was seen on day 14. Mean peak GAG content was 0.553 ± 0.062 μg/mg. Secondary treatment of the papain-digested implants with keratanase and chondroitinase ABC yielded similar trends in chondroitin sulfate (CS) and keratan sulfate (KS) concentrations. The CS content significantly (P = 0.0002) increased for the first 14 days of incubation, then a plateau was observed for the remainder of the study. Peak CS content was 0354 ± 0.037 μg/mg. Concentration of KS reached a plateau earlier than did CS content, with peak amount of 0.193 ± 0.027 μg/mg on day 10. Fluctuations in K5 content were not significant until an increase on day 22.
Chondrocytes actively populated the collagen implants, increasing in number and synthesizing matrix GAG epitopes over the 22 days of incubation. These results indicate that chondrocyte-laden porous collagen matrices may be suitable cartilage analogue materials and the optimal metabolic time for transfer to cartilage defects is 10 to 14 days.
SUMMARY
Sodium hyaluronate reduces adhesions after tendon repair in rodents and dogs, and has been used in limited clinical trials in people. To evaluate its effect on tendon healing and adhesion formation in horses and to compare these effects with those of a compound of similar viscoelastic properties, a study was performed in horses, using a model of collagenase injection in the flexor tendons within the digital sheath.
Eight clinically normal horses were randomly allotted to 2 groups. Adhesion formation between the deep digital flexor tendon and the tendon sheath at the pastern region was induced in the forelimbs of all horses. Using tenoscopic control, a 20-gauge needle was inserted into the deep digital flexor tendon of horses under general anesthesia and 0.2 ml of collagenase (2.5 mg/ml) was injected. The procedure was repeated proximally at 2 other sites, spaced 1.5 cm apart. A biopsy forceps was introduced, and a 5-mm tendon defect was created at each injection site. Group-A horses had 120 mg of sodium hyaluronate (NaHA) gel injected into the tendon sheath of one limb. Group-B horses had methylcellulose gel injected at the same sites. The contralateral limbs of horses in both groups served as surgical, but noninjected, controls. Horses were euthanatized after 8 weeks of stall rest.
Ultrasonographic evaluation revealed improved tendon healing after NaHa injection, but no difference in peritendinous adhesion formation. Tendon sheath fluid volume and hyaluronic acid (ha) content were greater in NaHA-treated limbs. Gross pathologic examination revealed considerably fewer and smaller adhesions when limbs were treated with NaHA. However, significant difference in pull-out strengths was not evident between NaHA-treated and control limbs. Histologically, the deep digital flexor tendon from the NaHA-treated limbs had reduced inflammatory cell infiltration, improved tendon structure, and less intratendinous hemorrhage. Treatmerit with methylcullulose had no significant effect on tendon healing, adhesion size, quantity, or strength or on the volume and composition of the tendon sheath fluid. Sodium hyaluronate, administered intrathecally, appears to have a pharmaceutically beneficial action in this collagenase-induced tendinitis and adhesion model in horses.