Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Aaron J. Rozental x
  • Refine by Access: All Content x
Clear All Modify Search



To evaluate whether cell-based and tissue-based immunofluorescent assays (IFAs) run in parallel could be used to detect glial fibrillary acidic protein (GFAP) autoantibodies in the CSF of dogs with meningoencephalitis of unknown origin (MUO) and other CNS disorders


15 CSF samples obtained from dogs with presumed MUO (n = 5), CNS disease other than MUO (5), and idiopathic epilepsy (5).


All CSF samples underwent parallel analysis with a cell-based IFA that targeted the α isoform of human GFAP and a tissue-based IFA that involved mouse brain cryosections. Descriptive data were generated.


Only 1 CSF sample yielded mildly positive results on the cell-based IFA; that sample was from 1 of the dogs with presumed MUO. The remaining 14 CSF samples tested negative on the cell-based IFA. All 15 CSF samples yielded negative results on the tissue-based IFA.


Results suggested that concurrent use of a cell-based IFA designed to target the human GFAP-α isoform and a tissue-based IFA that involved mouse tissue cryosections was inadequate for detection of GFAP autoantibodies in canine CSF samples. Given that GFAP autoantibodies were likely present in the CSF samples analyzed, these findings suggested that epitopes differ substantially between canine and human GFAP and that canine GFAP autoanti-body does not bind to mouse GFAP. Without a positive control, absence of GFAP autoantibody in this cohort cannot be ruled out. Further research is necessary to develop a noninvasive and sensitive method for diagnosis of MUO in dogs.

Full access
in American Journal of Veterinary Research