Search Results
You are looking at 51 - 60 of 74 items for
- Author or Editor: Lisa A. Fortier x
- Refine by Access: All Content x
Summary
Ten horses with histologically confirmed squamous cell carcinoma (scc) and 1 horse with presumptive scc of the external genitalia were treated with a combination of surgical debridement and topical administration of 5-fluorouracil, or with topical treatment alone. Tumor remission was obtained in all horses except 1 in which owner compliance was deficient, and no recurrences have been reported. Topical use of 5-fluorouracil as a chemotherapeutic agent for treatment of genital lesions of scc in horses should be considered as a viable alternative to radical surgical excision.
Abstract
Objective—To assess the effects of supraphysiologic concentrations of insulin-like growth factor-I (IGF-1) on morphologic and phenotypic responses of chondrocytes.
Sample Population—Articular cartilage obtained from 2 young horses.
Procedure—Chondrocytes were suspended in fibrin cultures and supplemented with 25, 12.5, or 0 mg of IGF-1/ml of fibrin. Chondrocyte morphology and phenotypic expression were assessed histologically, using H&E and Alcian blue stains, immunoreaction to collagen type I and II, and in situ hybridization. Proteoglycan content, synthesis, and monomer size were analyzed. The DNA content was determined by bisbenzimide-fluorometric assay, and elution of IGF-1 into medium was determined by IGF-1 radioimmunoassay.
Results—Both 12.5 and 25 µg of IGF-1/ml enhanced phenotypic expression of chondrocytes without inducing detrimental cellular or metabolic effects. Highest concentration of IGF-1 (25 µg/ml) significantly increased total DNA content, glycosaminoglycan (GAG) content, GAG synthesis, and size of proteoglycan monomers produced, compared with cultures supplemented with 12.5 µg of IGF-1/ml or untreated cultures. Histologic examination confirmed these biochemical effects. Matrix metachromasia, type-II collagen in situ hybridization and immunoreaction were increased in cultures treated with 25 µg of IGF-1/ml, compared with cultures supplemented with 12.5 µg of IGF-1/ml or untreated cultures.
Conclusions and Clinical Relevance—Chondrocytes exposed to high concentrations of IGF-1 maintained differentiated chondrocyte morphology and had enhanced synthesis of matrix molecules without inducing apparent detrimental effects on chondrocyte metabolism. These results suggest that application of such composites for in vivo use during cartilage grafting procedures should provide an anabolic effect on the grafted cells. (Am J Vet Res 2002;63:301–305)