Search Results

You are looking at 41 - 44 of 44 items for

  • Author or Editor: Christopher K. Cebra x
  • Refine by Access: All Content x
Clear All Modify Search


To identify factors associated with hepatic lipidosis (HL) in llamas and alpacas.


Retrospective case series.


30 llamas and 1 alpaca.


Medical records were searched to identify llamas or alpacas in which a histologic diagnosis of HL was made. Information was retrieved on signalment, history, clinical and laboratory findings, and results of necropsy or examination of biopsy specimens. Data were analyzed using descriptive statistics and χ2 analyses.


Females were affected more often than males; however, the sex distribution was not different from that of the camelid population in the diagnostic laboratory's database. Fifty-four percent of the females were pregnant, and 46% were lactating. Most affected camelids were 6 to 10 years old. Anorexia and recent weight loss were common (51.6% of camelids). An infective agent was found in only one llama, and toxins and mineral deficiencies were not identified. The most common abnormalities on serum biochemical analysis were a high concentration of bile acids, high activities of γ-glutamyltrans-ferase (GGT) and aspartate aminotransferase (AST), and hypoproteinemia. Concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (β-HB) were high in those camelids in which these compounds were assayed. Twenty-nine camelids did not survive.

Clinical Implications

Sick camelids should be considered at risk for developing HL, especially those with anorexia or the metabolic demands of pregnancy and lactation. Other stresses also appear to contribute. High concentrations of NEFA, γ-HB, and bile acids; high activities of GGT and AST; and hypoproteinemia may indicate that HL has developed. (J Am Vet Med Assoc 1999;214:1368–1372)

Free access
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association


Case Description—3 alpaca crias and cadavers of an alpaca cria and a llama cria were evaluated for evidence of esophageal dysfunction.

Clinical Findings—All 5 crias were between 3 and 5 months of age when clinical signs developed, and all had a thin body condition when examined. Clinical signs included coughing, regurgitation, and grossly visible esophageal peristaltic waves. A barium esophagram was used to diagnose esophageal obstruction, megaesophagus, and a vascular ring anomaly (VRA). Fluoroscopy was used to evaluate deglutition, esophageal peristalsis, and the extent of esophageal dilation in 1 alpaca cria. A persistent right aortic arch was identified in 1 alpaca cria, and a left aortic arch with right ductus arteriosus or ligamentum arteriosum and an aberrant right subclavian artery were identified in the 4 remaining crias.

Treatment and Outcome—Surgical correction of the VRA was attempted in the 3 live alpaca crias. It was complicated by the conformation and location of each VRA and inaccurate anatomic diagnosis of the VRAs before surgery. Treatment was universally unsuccessful because of intraoperative complications and the persistence of clinical signs after surgery.

Clinical Relevance—Megaesophagus is typically an idiopathic condition in camelids. However, these findings suggested that camelids with esophageal dysfunction during the neonatal period may have a VRA. The prognosis is grave for camelids with VRA, and accurate anatomic diagnosis of the VRA via the use of advanced imaging techniques (eg, angiography, computed tomography, or magnetic resonance imaging) may improve the success of surgical intervention.

Full access
in Journal of the American Veterinary Medical Association


Case Description—15 llamas and 34 alpacas between 3 weeks and 18 years old with fecal oocysts or intestinal coccidial stages morphologically consistent with Eimeria macusaniensis were examined. Nineteen of the camelids were admitted dead, and 30 were admitted alive. Camelids admitted alive accounted for 5.5% of all camelid admissions during this period.

Clinical Findings—Many severely affected camelids had signs of lethargy, weight loss, decreased appetite, and diarrhea. Camelids with clinical infection also commonly had evidence of circulatory shock, fat mobilization, and protein loss. Nonsurviving camelids also had evidence of shock, edema, bile stasis, renal insufficiency, hepatic lipidosis, muscle damage, relative hemoconcentration, and sepsis. Postmortem examination frequently re-vealed complete, segmental replacement of the mucosa of the distal portion of the jejunum with coccidial meronts and gamonts. For 17 of 42 camelids, results of initial fecal examinations for E macusaniensis were negative.

Treatment and Outcome—Most camelids admitted alive were treated with amprolium hydrochloride, plasma, and various supportive treatments. Fifteen of the 30 treated camelids died or were euthanized.

Clinical Relevance—Findings suggest that E macusaniensis may be an important gastrointestinal tract pathogen in camelids of all ages. Clinical signs were frequently nonspecific and were often evident before results of fecal examinations for the parasite were positive. As with other coccidia, severity of disease was probably related to ingested dose, host immunity, and other factors. The clinical and herd relevance of positive fecal examination results must be determined.

Full access
in Journal of the American Veterinary Medical Association