Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: Eugene P. Steffey x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine effects of a continuous rate infusion of lidocaine on the minimum alveolar concentration (MAC) of sevoflurane in horses.

Animals—8 healthy adult horses.

Procedures—Horses were anesthetized via IV administration of xylazine, ketamine, and diazepam; anesthesia was maintained with sevoflurane in oxygen. Approximately 1 hour after induction, sevoflurane MAC determination was initiated via standard techniques. Following sevoflurane MAC determination, lidocaine was administered as a bolus (1.3 mg/kg, IV, over 15 minutes), followed by constant rate infusion at 50 μg/kg/min. Determination of MAC for the lidocaine-sevoflurane combination was started 30 minutes after lidocaine infusion was initiated. Arterial blood samples were collected after the lidocaine bolus, at 30-minute intervals, and at the end of the infusion for measurement of plasma lidocaine concentrations.

Results—IV administration of lidocaine decreased mean ± SD sevoflurane MAC from 2.42 ± 0.24% to 1.78 ± 0.38% (mean MAC reduction, 26.7 ± 12%). Plasma lidocaine concentrations were 2,589 ± 811 ng/mL at the end of the bolus; 2,065 ± 441 ng/mL, 2,243 ± 699 ng/mL, 2,168 ± 339 ng/mL, and 2,254 ± 215 ng/mL at 30, 60, 90, and 120 minutes of infusion, respectively; and 2,206 ± 329 ng/mL at the end of the infusion. Plasma concentrations did not differ significantly among time points.

Conclusions and Clinical Relevance—Lidocaine could be useful for providing a more balanced anesthetic technique in horses. A detailed cardiovascular study on the effects of IV infusion of lidocaine during anesthesia with sevoflurane is required before this combination can be recommended.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To test a hypothesis predicting that isoflurane would interfere with cerebrovascular autoregulation in horses and to evaluate whether increased mean arterial blood pressure (MAP) would increase cerebral blood flow and intracranial pressure (ICP) during isoflurane anesthesia.

Animals—6 healthy adult horses.

Procedures—Horses were anesthetized with isoflurane at a constant end-tidal concentration sufficient to maintain MAP at 60 mm Hg. The facial, carotid, and dorsal metatarsal arteries were catheterized for blood sample collection and pressure measurements. A sub-arachnoid transducer was used to measure ICP Fluorescent microspheres were injected through a left ventricular catheter during MAP conditions of 60 mm Hg, and blood samples were collected. This process was repeated with different-colored microspheres at the same isoflurane concentration during MAP conditions of 80 and 100 mm Hg achieved with IV administration of dobutamine. Central nervous system tissue samples were obtained after euthanasia to quantify fluorescence and calculate blood flow.

Results—Increased MAP did not increase ICP or blood flow in any of the brain tissues examined. However, values for blood flow were low for all tested brain regions except the pons and cerebellum. Spinal cord blood flow was significantly decreased at the highest MAP.

Conclusions and Clinical Relevance—Results suggested that healthy horses autoregulate blood flow in the CNS at moderate to deep planes of isoflurane anesthesia. Nonetheless, relatively low blood flows in the brain and spinal cord of anesthetized horses may increase risks for hypoperfusion and neurologic injury.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the anesthetic-sparing effect of maropitant, a neurokinin 1 receptor antagonist, during noxious visceral stimulation of the ovary and ovarian ligament in dogs.

Animals—Eight 1-year-old female dogs.

Procedures—Dogs were anesthetized with sevoflurane. Following instrumentation and stabilization, the right ovary and ovarian ligament were accessed by use of laparoscopy. The ovary was stimulated with a traction force of 6.61 N. The minimum alveolar concentration (MAC) was determined before and after 2 doses of maropitant.

Results—The sevoflurane MAC value was 2.12 ± 0.4% during stimulation without treatment (control). Administration of maropitant (1 mg/kg, IV, followed by 30 μg/kg/h, IV) decreased the sevoflurane MAC to 1.61 ± 0.4% (24% decrease). A higher maropitant dose (5 mg/kg, IV, followed by 150 μg/kg/h, IV) decreased the MAC to 1.48 ± 0.4% (30% decrease).

Conclusions and Clinical Relevance—Maropitant decreased the anesthetic requirements during visceral stimulation of the ovary and ovarian ligament in dogs. Results suggest the potential role for neurokinin 1 receptor antagonists to manage ovarian and visceral pain.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To test the hypothesis that head-down positioning in anesthetized horses increases intracranial pressure (ICP) and decreases cerebral and spinal cord blood flows.

Animals—6 adult horses.

Procedures—For each horse, anesthesia was induced with ketamine hydrochloride and xylazine hydrochloride and maintained with 1.57% isoflurane in oxygen. Once in right lateral recumbency, horses were ventilated to maintain normocapnia. An ICP transducer was placed in the subarachnoid space, and catheters were placed in the left cardiac ventricle and in multiple vessels. Blood flow measurements were made by use of a fluorescent microsphere technique while each horse was in horizontal and head-down positions. Inferential statistical analyses were performed via repeated-measures ANOVA and Dunn-Sidak comparisons.

Results—Because 1 horse developed extreme hypotension, data from 5 horses were analyzed. During head-down positioning, mean ± SEM ICP increased to 55 ± 2 mm Hg, compared with 31 ± 2 mm Hg during horizontal positioning; cerebral perfusion pressure was unchanged. Compared with findings during horizontal positioning, blood flow to the cerebrum, cerebellum, and cranial portion of the brainstem decreased significantly by approximately 20% during head-down positioning; blood flows within the pons and medulla were mildly but not significantly decreased. Spinal cord blood flow was low (9 mL/min/100 g of tissue) and unaffected by position.

Conclusions and Clinical Relevance—Head-down positioning increased heart-brain hydrostatic gradients in isoflurane-anesthetized horses, thereby decreasing cerebral blood flow and, to a greater extent, increasing ICP. During anesthesia, CNS regions with low blood flows in horses may be predisposed to ischemic injury induced by high ICP.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To measure concentrations of trazodone and its major metabolite in plasma and urine after administration to healthy horses and concurrently assess selected physiologic and behavioral effects of the drug.

ANIMALS 11 Thoroughbred horses enrolled in a fitness training program.

PROCEDURES In a pilot investigation, 4 horses received trazodone IV (n = 2) or orally (2) to select a dose for the full study; 1 horse received a vehicle control treatment IV. For the full study, trazodone was initially administered IV (1.5 mg/kg) to 6 horses and subsequently given orally (4 mg/kg), with a 5-week washout period between treatments. Blood and urine samples were collected prior to drug administration and at multiple time points up to 48 hours afterward. Samples were analyzed for trazodone and metabolite concentrations, and pharmacokinetic parameters were determined; plasma drug concentrations following IV administration best fit a 3-compartment model. Behavioral and physiologic effects were assessed.

RESULTS After IV administration, total clearance of trazodone was 6.85 ± 2.80 mL/min/kg, volume of distribution at steady state was 1.06 ± 0.07 L/kg, and elimination half-life was 8.58 ± 1.88 hours. Terminal phase half-life was 7.11 ± 1.70 hours after oral administration. Horses had signs of aggression and excitation, tremors, and ataxia at the highest IV dose (2 mg/kg) in the pilot investigation. After IV drug administration in the full study (1.5 mg/kg), horses were ataxic and had tremors; sedation was evident after oral administration.

CONCLUSIONS AND CLINICAL RELEVANCE Administration of trazodone to horses elicited a wide range of effects. Additional study is warranted before clinical use of trazodone in horses can be recommended.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To develop a method for surgical placement of a commercial microsensor intracranial pressure (ICP) transducer and to characterize normal ICP and cerebral perfusion pressures (CPP) in conscious adult horses.

Animals—6 healthy castrated male adult horses (1 Holsteiner, 1 Quarter Horse, and 4 Thoroughbreds).

Procedure—Anesthesia was induced and maintained by use of isoflurane as the sole agent. Catheters were inserted percutaneously into the jugular vein and carotid artery. A microsensor ICP transducer was inserted in the subarachnoid space by means of right parietal craniotomy. The burr hole was then sealed with bone wax, the surgical incision was sutured, and the transducer was secured in place. Measurements were collected 1 hour after horses were able to stand during recovery from anesthesia.

Results—Mean ± SD values for ICP and CPP were 2 ± 4 and 102 ± 26 mm Hg, respectively.

Conclusion and Clinical Relevance—This report describes a relatively facile technique for obtaining direct and accurate ICP measurements for adult horses. The ICP values obtained in this study are within reference ranges established for other species and provide a point of reference for the diagnosis of abnormal ICP in adult horses. (Am J Vet Res 2002;63:1252–1256)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To establish the route of infusion (IV or intraosseous) that results in the highest concentration of amikacin in the synovial fluid of the tibiotarsal joint and determine the duration of peak concentrations.

Animals—21 horses.

Procedure—Regional perfusion of a limb on 15 horses was performed. Amikacin sulfate was infused into the saphenous vein or via intraosseous infusion into the distal portion of the tibia (1 g in 56 ml of lactated Ringer's solution) or proximal portion of the metatarsus (1 g of amikacin in 26 ml of lactated Ringer's solution). Amikacin concentrations were measured in sequential samples from tibiotarsal joint synovial fluid and serum. Samples were obtained immediately prior to release of the tourniquet and 0.5, 1, 4, 8, 12, and 24 hours after the tourniquet was released. Radiographic contrast material was infused into the same locations as the antibiotic perfusate to evaluate distribution in 6 other horses.

Results—Infusion into the saphenous vein produced the highest concentration of amikacin in the tibiotarsal joint, compared with the distal portion of the tibia (mean ± SE, 701.8 ± 366.8 vs 203.8 ± 64.5 µg/ml, respectively). Use of a lower volume of diluent in the proximal portion of the metatarsus produced a peak value of 72.2 ± 23.4 µg/ml.

Conclusions and Clinical Relevance—For regional perfusion of the tarsus, IV infusion is preferred to intraosseous infusion, because higher concentrations are achieved in the synovial fluid, and the procedure is easier to perform. (Am J Vet Res 2002;63:374–380).

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the use of xylazine and ketamine for total IV anesthesia in horses.

Animals—8 horses.

Procedure—Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, IV), guaifenesin (75 mg/kg, IV), and ketamine (2 mg/kg, IV). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (µg/kg/min) and X and K represent xylazine and ketamine, respectively: X35+K90 with 100% inspired oxygen (O2), X35+K120-O2, X35+K150-O2, X70+K90-O2, K150-O2, and X35+K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated.

Results—Heart rate and cardiac index were higher and total peripheral resistance lower in K150-O2 and X35+K120-air groups. The mean arterial pressure was highest in the X35+K120-air group and lowest in the K150-O2 group (125 ± 6 vs 85 ± 8 at 20 minutes, respectively). Mean PaO2 was lowest in the X35+K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-O2 (23 ± 6 minutes and 33 ± 8 minutes, respectively) and longest for those receiving X70+K90-O2 (58 ± 28 minutes and 69 ± 27 minutes, respectively).

Conclusions and Clinical Relevance—Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses. (Am J Vet Res 2005;66:1002–1007)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare characteristics of horses recovering from 4 hours of desflurane anesthesia with and without immediate postanesthetic IV administration of propofol and xylazine.

Animals—8 healthy horses (mean ± SEM age, 6.6 ± 1.0 years; mean body weight, 551 ± 50 kg).

Procedures—Horses were anesthetized twice. Both times, anesthesia was induced with a combination of xylazine hydrochloride, diazepam, and ketamine hydrochloride and then maintained for 4 hours with desflurane in oxygen. Choice of postanesthetic treatment was randomly assigned via a crossover design such that each horse received an IV injection of propofol and xylazine or saline (0.9% NaCl) solution after the anesthetic episode. Recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and after anesthesia for determination of serum creatine kinase activity and plasma propofol concentration.

Results—Anesthetic induction and maintenance were unremarkable in all horses. Compared with administration of saline solution, postanesthetic administration of propofol and xylazine resulted in an increased interval to emergence from anesthesia but improved quality of recovery-related transition to standing. Compared with administration of saline solution, administration of propofol also delayed the rate of decrease of end-tidal concentrations of desflurane and carbon dioxide and added to conditions promoting hypoxemia and hypoventilation.

Conclusions and Clinical Relevance—Propofol and xylazine administered IV to horses after 4 hours of desflurane anesthesia improved the quality of transition from lateral recumbency to standing but added potential for harmful respiratory depression during the postanesthetic period.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate sevoflurane as an inhalation anesthetic for thoracotomy in horses.

Animals—18 horses between 2 and 15 years old.

Procedure—4 horses were used to develop surgical techniques and were euthanatized at the end of the procedure. The remaining 14 horses were selected, because they had an episode of bleeding from their lungs during strenuous exercise. General anesthesia was induced with xylazine (1.0 mg/kg of body weight, IV) followed by ketamine (2.0 mg/kg, IV). Anesthesia was maintained with sevoflurane in oxygen delivered via a circle anesthetic breathing circuit. Ventilation was controlled to maintain PaCO2 at approximately 45 mm Hg. Neuromuscular blocking drugs (succinylcholine or atracurium) were administered to eliminate spontaneous breathing efforts and to facilitate surgery. Cardiovascular performance was monitored and supported as indicated.

Results—2 of the 14 horses not euthanatized died as a result of ventricular fibrillation. Mean (± SD) duration of anesthesia was 304.9 ± 64.1 minutes for horses that survived and 216.7 ± 85.5 minutes for horses that were euthanatized or died. Our subjective opinion was that sevoflurane afforded good control of anesthetic depth during induction, maintenance, and recovery.

Conclusions and Clinical Relevance—Administration of sevoflurane together with neuromuscular blocking drugs provides stable and easily controllable anesthetic management of horses for elective thoracotomy and cardiac manipulation. (Am J Vet Res 2000;61:1430–1437)

Full access
in American Journal of Veterinary Research