Search Results

You are looking at 21 - 29 of 29 items for

  • Author or Editor: Erik Hofmeister x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the effects of ketamine, diazepam, and the combination of ketamine and diazepam on intraocular pressures (IOPs) in clinically normal dogs in which premedication was not administered.

Animals—50 dogs.

Procedures—Dogs were randomly allocated to 1 of 5 groups. Dogs received ketamine alone (5 mg/kg [KET5] or 10 mg/kg [KET10], IV), ketamine (10 mg/kg) with diazepam (0.5 mg/kg, IV; KETVAL), diazepam alone (0.5 mg/kg, IV; VAL), or saline (0.9% NaCl) solution (0.1 mL/kg, IV; SAL). Intraocular pressures were measured immediately before and after injection and at 5, 10, 15, and 20 minutes after injection.

Results—IOP was increased over baseline values immediately after injection and at 5 and 10 minutes in the KET5 group and immediately after injection in the KETVAL group. Compared with the SAL group, the mean change in IOP was greater immediately after injection and at 5 and 10 minutes in the KET5 group. The mean IOP increased to 5.7, 3.2, 3.1, 0.8, and 0.8 mm Hg over mean baseline values in the KET5, KET10, KETVAL, SAL, and VAL groups, respectively. All dogs in the KET5 and most dogs in the KETVAL and KET10 groups had an overall increase in IOP over baseline values.

Conclusions and Clinical Relevance—Compared with baseline values and values obtained from dogs in the SAL group, ketamine administered at a dose of 5 mg/kg, IV, caused a significant and clinically important increase in IOP in dogs in which premedication was not administered. Ketamine should not be used in dogs with corneal trauma or glaucoma or in those undergoing intraocular surgery.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate the effects of acepromazine maleate and morphine on aqueous tear production before, during, and after sevoflurane anesthesia in dogs.

Animals—6 mixed-breed dogs.

Procedures—In a Latin square study design, dogs underwent IM administration of morphine (1 mg/kg), acepromazine (0.05 mg/kg), or saline (0.9% NaCl) solution (0.05 mL/kg), followed by induction and maintenance of anesthesia with sevoflurane for 30 minutes. The protocol was repeated until all dogs had received all treatments, with a minimum of 7 days between anesthetic episodes. Aqueous tear production was measured via Schirmer tear test I before treatment (baseline); before anesthetic induction; 5, 10, 20, and 30 minutes after anesthetic induction; immediately once dogs recovered from anesthesia; and 2 and 10 hours after recovery.

Results—Aqueous tear production for all treatments was significantly lower 10, 20, and 30 minutes (but not 5 minutes) after anesthetic induction than at baseline, before anesthetic induction, at recovery, and 2 and 10 hours after recovery. Aqueous tear production was significantly higher after saline solution administration than after morphine administration at the preinduction measurement point and 2 hours after recovery. No other differences were detected among the 3 treatments.

Conclusions and Clinical Relevance—Aqueous tear production after anesthesia did not differ significantly from baseline values after any treatment following 30 minutes of sevoflurane anesthesia, suggesting premedication with morphine or acepromazine does not contribute to a decrease in lacrimation in these circumstances.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine induction characteristics and the minimum alveolar concentration (MAC) at which consciousness returned (MACawake) in dogs anesthetized with isoflurane or sevoflurane.

Animals—20 sexually intact male Beagles.

Procedures—In experiment 1, 20 dogs were randomly assigned to have anesthesia induced and maintained with isoflurane or sevoflurane. The MAC at which each dog awoke in response to auditory stimulation (MACawake-noise) was determined by decreasing the end-tidal concentration by 0.1 volume (vol %) every 15 minutes and delivering a standard audible stimulus at each concentration until the dog awoke. In experiment 2, 12 dogs received the same anesthetic agent they were administered in experiment 1. After duplicate MAC determination, the end-tidal concentration was continually decreased by 10% every 15 minutes until the dog awoke from anesthesia (MACawake).

Results—Mean induction time was significantly greater for isoflurane-anesthetized dogs (212 seconds), compared with the sevoflurane-anesthetized dogs (154 seconds). Mean ± SD MACawake-noise was 1.1 ± 0.1 vol % for isoflurane and 2.0 ± 0.2 vol % for sevoflurane. Mean MAC was 1.3 ± 0.2 vol % for isoflurane and 2.1 ± 0.6 vol % for sevoflurane, and mean MACawake was 1.0 ± 0.1 vol % for isoflurane and 1.3 ± 0.3 vol % for sevoflurane.

Conclusions and Clinical Relevance—Sevoflurane resulted in a more rapid induction than did isoflurane. The MACawake for dogs was higher than values reported for both agents in humans. Care should be taken to ensure that dogs are at an appropriate anesthetic depth to prevent consciousness, particularly when single-agent inhalant anesthesia is used.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate effects of the addition of glucose to dog and cat urine on urine specific gravity (USG) and determine whether glucosuria affects assessment of renal concentrating ability.

SAMPLE

Urine samples from 102 dogs and 59 cats.

PROCEDURES

Urine for each species was pooled to create samples with various USGs. Glucose was added to an aliquot of each USG pool (final concentration, 2,400 mg/dL), and serial dilutions of the glucose-containing aliquot were created for each pool. The USG then was measured in all samples. The difference in USG attributable to addition of glucose was calculated by subtracting the USG of the unaltered sample from the USG of the sample after the addition of glucose. The relationship between the difference in USG and the USG of the unaltered, undiluted sample was evaluated by the use of linear regression analysis.

RESULTS

Addition of glucose to urine samples increased the USG. There was a significant relationship between USG of the undiluted sample and the difference in USG when glucose was added to obtain concentrations of 300, 600, 1,200, and 2,400 mg/dL in canine urine and concentrations of 600, 1,200, and 2,400 mg/dL in feline urine. The more concentrated the urine before the addition of glucose, the less change there was in the USG. Changes in USG attributable to addition of glucose were not clinically important.

CONCLUSIONS AND CLINICAL RELEVANCE

Substantial glucosuria resulted in minimal alterations in specific gravity of canine and feline urine samples. Thus, USG can be used to assess renal concentrating ability even in samples with glucosuria.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare single and triplicate applanation tonometry values across previous intraocular pressure (IOP) studies in dogs.

ANIMALS

116 ophthalmologically normal dogs.

PROCEDURES

Triplicate IOP readings (n = 1432) from studies evaluating effect of anesthetic protocols were analyzed to estimate a range of probable differences between averaged triplicate and first, averaged and lowest, and first and lowest IOPs. The decrease in variability with triplicate measurements and the magnitude of effects on statistical power were quantified.

RESULTS

The 2.5th to 97.5th interpercentile range for differences of averaged triplicate values minus first IOP readings was –3 to 2.7 mm Hg; for averaged minus lowest: 0 to 3.7 mm Hg; for first minus lowest: 0 to 5 mm Hg. The 95% prediction interval for differences in study group means (n = 160 groups, n = 5 to 11 eyes per group) based on averaged minus first measurements was –1.0 to 0.9 mm Hg with associated SDs reduced by 4% on average. Analysis of previous studies using averaged instead of first IOP values resulted in minimal decreases in SEs of 3–9% (0.03 to 0.09 mm Hg). Of 11 comparisons found significant with averaged data, 2 (18%) were found nonsignificant with first measurements. Of 96 comparisons found nonsignificant with averaged data, 3 (3%) were found significant with first measurements.

CLINICAL RELEVANCE

With applanation tonometry in ophthalmologically normal dogs, no clinically meaningful difference was found between the first, lowest, or averaged triplicate IOP measurements, but the first reading has a larger variance and hence will result in lower statistical power.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To determine the minimum alveolar concentration that blunts adrenergic responses (MACBAR) for isoflurane and evaluate effects of fentanyl on isoflurane MACBAR in sheep.

ANIMALS 13 healthy adult Dorset-cross adult ewes.

PROCEDURES In a crossover design, each ewe was anesthetized 2 times for determination of isoflurane MACBAR. Anesthesia was induced with propofol administered IV. Sheep initially received fentanyl (5 μg/kg, IV, followed by a constant rate infusion of 5 μg/kg/h) or an equivalent volume of saline (0.9% NaCl) solution (control treatment). After a washout period of at least 8 days, the other treatment was administered. For MACBAR determination, a mechanical nociceptive stimulus (ie, sponge forceps) was applied at the coronary band for 1 minute. The MACBAR values of the 2 treatments were compared by means of a paired t test. During MACBAR determination, blood samples were collected for measurement of plasma fentanyl concentration.

RESULTS Mean ± SD isoflurane MACBAR of the fentanyl and control treatments was 1.70 ± 0.28% and 1.79 ± 0.35%, respectively; no significant difference was found between the 2 treatments. Plasma concentration of fentanyl reached a median steady-state concentration of 1.69 ng/mL (interquartile range [25th to 75th percentile], 1.47 to 1.79 ng/mL), which was maintained throughout the study.

CONCLUSIONS AND CLINICAL RELEVANCE Administration of fentanyl at 5 μg/kg, IV, followed by a constant rate infusion of the drug at 5 μg/kg/h did not decrease isoflurane MACBAR. Further studies to determine the effect of higher doses of fentanyl on inhalation anesthetic agents and their potential adverse effects are warranted. (Am J Vet Res 2016;77:119–126)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To describe misoprostol pharmacokinetics and anti-inflammatory efficacy when administered orally or per rectum in endotoxin-challenged horses.

ANIMALS

6 healthy geldings.

PROCEDURES

A randomized 3-treatment crossover design was performed with a minimum washout period of 28 days between treatment arms. Prior to endotoxin challenge (lipopolysaccharide, 30 ng/kg IV over 30 minutes), horses received misoprostol (5 µg/kg once) per os (M-PO) or per rectum (M-PR) or water as control (CON). Clinical parameters were evaluated and blood samples obtained to measure plasma misoprostol free acid concentration, leukocyte counts, and tumor necrosis factor-α (TNFα) and interleukin 6 (IL-6) leukocyte gene expression and serum concentrations.

RESULTS

In the M-PO treatment arm, maximum plasma concentration and area under the concentration-versus-time curve (mean ± SD) were higher (5,209 ± 3,487 pg/mL and 17,998,254 ± 13,194,420 h·pg/mL, respectively) and median (interquartile range) time to maximum concentration (25 min [18 to 34 min]) was longer than in the M-PR treatment arm (854 ± 855 pg/mL; 644,960 ± 558,866 h·pg/mL; 3 min [3 to 3.5 min]). Significant differences in clinical parameters, leukocyte counts, and TNFα or IL-6 gene expression or serum protein concentration were not detected. Downregulation of relative gene expression was appreciated for individual horses in the M-PO and M-PR treatment arms at select time points.

CLINICAL RELEVANCE

Considerable variability in measured parameters was detected among horses within and between treatment arms. Misoprostol absorption and systemic exposure after PO administration differed from previous reports in horses not administered LPS. Investigation of multidose administration of misoprostol is warranted to better evaluate efficacy as an anti-inflammatory therapeutic.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate agreement among diplomates of the American College of Veterinary Anesthesia and Analgesia for scores determined by use of a simple descriptive scale (SDS) or a composite grading scale (CGS) for quality of recovery of horses from anesthesia and to investigate use of 3-axis accelerometry (3AA) for objective evaluation of recovery.

ANIMALS 12 healthy adult horses.

PROCEDURES Horses were fitted with a 3AA device and then were anesthetized. Eight diplomates evaluated recovery by use of an SDS, and 7 other diplomates evaluated recovery by use of a CGS. Agreement was tested with κ and AC1 statistics for the SDS and an ANOVA for the CGS. A library of mathematical models was used to map 3AA data against CGS scores.

RESULTS Agreement among diplomates using the SDS was slight (κ = 0.19; AC1 = 0.22). The CGS scores differed significantly among diplomates. Best fit of 3AA data against CGS scores yielded the following equation: RS = 9.998 × SG0.633 × ∑UG0.174, where RS is a horse's recovery score determined with 3AA, SG is acceleration of the successful attempt to stand, and ∑UG is the sum of accelerations of unsuccessful attempts to stand.

CONCLUSIONS AND CLINICAL RELEVANCE Subjective scoring of recovery of horses from anesthesia resulted in poor agreement among diplomates. Subjective scoring may lead to differences in conclusions about recovery quality; thus, there is a need for an objective scoring method. The 3AA system removed subjective bias in evaluations of recovery of horses and warrants further study.

Full access
in American Journal of Veterinary Research