Search Results

You are looking at 21 - 30 of 48 items for

  • Author or Editor: David A. Wilson x
  • Refine by Access: All Content x
Clear All Modify Search



To evaluate distribution and intensity of 99mTc-methylene diphosphonate (99mTc-MDP) uptake in the navicular area in horses with forelimb lameness isolated to the palmar aspect of the foot.


Prospective, case-controlled study.


7 horses with clinical signs of navicular syndrome and 7 control horses.


Palmar view, soft tissue-phase scintigraphic images of the foot were obtained between 7 and 12 minutes after injection of 120 to 170 mCi of 99mTc-MDP. Lateral and palmar view, bone-phase images were obtained at 30 minutes and 1, 2, and 4 hours after injection. Palmar views were evaluated by determining the ratio of image density in the navicular area to mean image density in the distal phalangeal area. Palmar and lateral view, bone-phase images were also scored on the basis of navicular area intensity (intense = 3, moderate = 2, mild = 1, and no uptake = 0). Density ratios and mean scores were evaluated as a three-way ANOVA.


Mean navicular-to-distal phalangeal density ratio for affected horses (1.77) was significantly (P = 0.003) greater than that for control horses (0.97). The mean subjective score for affected horses when evaluating palmar views only (1.85) and when evaluating palmar and lateral view pairs together (1.99) was significantly (P < 0.01) higher than scores for control horses (0.51, 0.62). Images obtained 1 hour after injection were as good at differentiating affected from control horses as images obtained between 2 to 4 hours after injection.


A substantial number of horses with palmar foot pain have increased scintigraphic uptake within the navicular bone 1 to 4 hours after injection of 99mTc-MDP. Lateral view, bone-phase images are less sensitive than palmar view, bone-phase images in revealing navicular area uptake.

Clinical Relevance

A combination of lateral and palmar view scintigraphic images obtained between 1 and 4 hours after injection of 99mTc-MDP is a useful diagnostic aid in evaluating navicular bone involvement in horses with forelimb lameness isolated to the palmar aspect of the foot. (Am J Vet Res 1996;57:415–421)

Free access
in American Journal of Veterinary Research


Objective—To determine the effectiveness of administering multiple doses of phenylbutazone alone or a combination of phenylbutazone and flunixin meglumine to alleviate lameness in horses.

Animals—29 adult horses with naturally occurring forelimb and hind limb lameness.

Procedures—Lameness evaluations were performed by use of kinematic evaluation while horses were trotting on a treadmill. Lameness evaluations were performed before and 12 hours after administration of 2 nonsteroidal anti-inflammatory drug (NSAID) treatment regimens. Phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days, or phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days in combination with flunixin meglumine administered at 1.1 mg/kg, IV, every 12 hours for 5 days.

Results—Alleviation of lameness was greater after administration of the combination of NSAIDs than after oral administration of phenylbutazone alone. Improvement in horses after a combination of NSAIDs did not completely mask lameness. Five horses did not improve after either NSAID treatment regimen. All posttreatment plasma concentrations of NSAIDs were less than those currently allowed by the United States Equestrian Federation Inc for a single NSAID. One horse administered the combination NSAID regimen died of acute necrotizing colitis during the study.

Conclusions and Clinical Relevance—Administration of a combination of NSAIDs at the dosages and intervals used in the study reported here alleviated the lameness condition more effectively than did oral administration of phenylbutazone alone. This may attract use of combinations of NSAIDs to increase performance despite potential toxic adverse effects.

Full access
in American Journal of Veterinary Research


Objective—To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover).

Animals—10 adult horses.

Procedure—A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim–no shoe) and after 2 treatments by a farrier (treatment 2, trim–standard shoe; and treatment 3, trim–contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits.

Results—Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2° and 2.5° during the first half of breakover when trotting, compared with values for no trim–no shoe and trim–standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe.

Conclusions and Clinical Relevance—A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover. (Am J Vet Res 2005;66:2046–2054)

Full access
in American Journal of Veterinary Research


Objective—To characterize compensatory movements of the head and pelvis that resemble lameness in horses.

Animals—17 adult horses.

Procedure—Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis.

Results—Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%.

Conclusions and Clinical Relevance—Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs. (Am J Vet Res 2005;66:646–655)

Full access
in American Journal of Veterinary Research


Objective—To determine significant molecular and cellular factors responsible for differences in secondintention healing in thoracic and metacarpal wounds of horses.

Animals—6 adult mixed-breed horses.

Procedure—A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with α-smooth muscle actin (α-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining.

Results—Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-β1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds.

Conclusions and Clinical Relevance—Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA, TGF-β1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue. (Am J Vet Res 2002;63:1564–1570)

Full access
in American Journal of Veterinary Research



To determine the accuracy of 2 interstitial glucose-monitoring systems (GMSs) for use in horses compared with a point-of-care (POC) glucometer and standard laboratory enzymatic chemistry method (CHEM).


8 clinically normal adult horses.


One of each GMS device (Dexcom G6 and Freestyle Libre 14-day) was placed on each horse, and blood glucose concentration was measured via POC and CHEM at 33 time points and compared with simultaneous GMS readings. An oral glucose absorption test (OGAT) was performed on day 2, and glucose concentrations were measured and compared.


Glucose concentrations were significantly correlated with one another between all devices on days 1 to 5. Acceptable agreement was observed between Dexcom G6 and Freestyle Libre 14-day when compared with CHEM on days 1, 3, 4, and 5 with a combined mean bias of 10.45 mg/dL and 1.53 mg/dL, respectively. During dextrose-induced hyperglycemia on day 2, mean bias values for Dexcom G6 (10.49 mg/dL) and FreeStyle Libre 14-day (0.34 mg/dL) showed good agreement with CHEM.


Serial blood glucose measurements are used to diagnose or monitor a variety of conditions in equine medicine; advances in near-continuous interstitial glucose monitoring allow for minimally invasive glucose assessment, thereby reducing stress and discomfort to patients. Data from this study support the use of the Dexcom G6 and Freestyle Libre 14-day interstitial glucose-monitoring systems to estimate blood glucose concentrations in horses.

Full access
in American Journal of Veterinary Research


Objective—To compare a sensor-based accelerometer-gyroscopic (A-G) system with a video-based motion analysis system (VMAS) technique for detection and quantification of lameness in horses.

Animals—8 adult horses.

Procedure—2 horses were evaluated once, 2 had navicular disease and were evaluated before and after nerve blocks, and 4 had 2 levels of shoe-induced lameness, alternatively, in each of 4 limbs. Horses were instrumented with an accelerometer transducer on the head and pelvis, a gyroscopic transducer on the right forelimb and hind feet, and a receiver-transmitter. Signals from the A-G system were collected simultaneously with those from the VMAS for collection of head, pelvis, and right feet positions with horses trotting on a treadmill. Lameness was detected with an algorithm that quantified lameness as asymmetry of head and pelvic movements. Comparisons between the A-G and VMAS systems were made by use of correlation and agreement (κ value) analyses.

Results—Correlation between the A-G and VMAS systems for quantification of lameness was linear and high ( r 2 = 0.9544 and 0.8235 for forelimb and hind limb, respectively). Quantification of hind limb lameness with the A-G system was higher than measured via VMAS. Agreement between the 2 methods for detection of lameness was excellent (κ = 0.76) for the forelimb and good (κ = 0.56) for the hind limb.

Conclusions and Clinical Relevance—The A-G system detected and quantified forelimb and hind limb lameness in horses trotting on the treadmill. Because the data are collected wirelessly, this system might be used to objectively evaluate lameness in the field. ( Am J Vet Res 2004;65:665–670)

Full access
in American Journal of Veterinary Research


Objective—To determine gene transcription for cytokines in nucleated cells in CSF of horses without neurologic signs or with cervical stenotic myelopathy (CSM), West Nile virus (WNV) encephalitis, equine protozoal myeloencephalitis (EPM), or spinal cord trauma.

Animals—41 horses (no neurologic signs [n = 12], CSM [8], WNV encephalitis [9], EPM [6], and spinal cord trauma [6]).

Procedures—Total RNA was extracted from nucleated cells and converted into cDNA. Gene expression was measured by use of real-time PCR assay and final quantitation via the comparative threshold cycle method.

Results—Cytokine genes expressed by nucleated cells of horses without neurologic signs comprised a balance between proinflammatory tumor necrosis factor-α (TNF-α), anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β), and Th1 mediators (interferon [IFN]-γ). Cells of horses with CSM mainly expressed genes for TNF-α, TGF-β, and IL-10. Cells of horses with WNV encephalitis mainly expressed genes for IL-6 and TGF-β. Cells of horses with EPM mainly had expression of genes for IL-6, IL-8, IL-10, TNF-α, IFN-γ, and TGF-β. Cells from horses with spinal cord trauma had expression mainly for IL-6; IFN-γ; TGF-β; and less frequently, IL-2, IL-10, and TNF-α. Interleukin-8 gene expression was only detected in CSF of horses with infectious diseases.

Conclusions and Clinical Relevance—Despite the small number of CSF samples for each group, results suggest distinct gene signatures expressed by nucleated cells in the CSF of horses without neurologic signs versus horses with inflammatory or traumatic neurologic disorders.

Full access
in American Journal of Veterinary Research