Search Results

You are looking at 21 - 30 of 44 items for

  • Author or Editor: Christopher K. Cebra x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate effects of hydrocortisone administration, with and without concurrent administration of insulin, on intermediary metabolism in alpacas.

Animals—8 adult castrated male alpacas.

Procedure—On each of 2 consecutive days, food was withheld from alpacas for 8 hours. Alpacas then were administered 1 mg of hydrocortisone sodium succinate/kg, IV (time 0). On 1 of the days, randomly assigned alpacas were also administered regular insulin (0.2 U/kg, IV) 120 minutes after hydrocortisone administration. Blood samples were collected at 0, 120, 135, 150, 165, 180, 210, 240, 300, and 360 minutes. Plasma concentrations of glucose and lactate and serum concentrations of triglycerides, cholesterol, nonesterified fatty acids, and β-hydroxybutyrate were determined. Data were compared between days. Additionally, serum insulin concentrations before and after hydrocortisone administration were determined for selected samples.

Results—Hydrocortisone administration induced hyperglycemia, hyperinsulinemia, a reduction in concentrations of triglycerides and cholesterol, and a reduction in triglyceride-to-cholesterol ratio. Subsequent insulin administration temporarily negated the hyperglycemic effects of hydrocortisone, induced temporary hyperlactemia, and augmented the reduction in blood triglycerides.

Conclusion and Clinical Relevance—A single dose of a short-acting corticosteroid does not increase blood lipid fractions in healthy alpacas, probably because of a competent endogenous insulin response. Corticosteroids may induce differing responses in camelids with depleted glycogen stores or an ineffective insulin response. Administration of insulin can effectively negate the hyperglycemic effects of hydrocortisone and augment lipoprotein clearance. Hence, insulin administration may be therapeutic for alpacas with hyperglycemia, hyperlipemia, or hyperketonemia. (Am J Vet Res 2002;63:1269–1274)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of administration of hydrocortisone on plasma concentration of insulin and serum concentrations of glucose, triglyceride, and nonesterified fatty acids (NEFAs) in llamas before and after feed restriction.

Animals—9 adult female llamas.

Procedure—Feed was withheld from llamas for 8 hours. Blood samples were collected before (0 minutes) and 120, 180, 240, and 300 minutes after IV injection of hydrocortisone sodium succinate (1 mg/kg) for determination of plasma insulin concentration and serum concentrations of glucose, triglyceride, and NEFAs. The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 21 days, after which the experimental procedures were repeated.

Results—Compared with llamas that were not feedrestricted, llamas after feed restriction had significantly higher plasma insulin concentration and serum concentrations of triglycerides and NEFAs. Feed-restricted llamas after hydrocortisone injection had a significantly smaller increase in serum glucose concentration, a decrease (rather than an increase) in serum concentration of NEFAs, and no change in blood concentrations of insulin or triglycerides.

Conclusions and Clinical Relevance—Short-acting glucocorticoid hormones did not appear to increase blood lipid concentrations in healthy llamas, regardless of ongoing fat mobilization. Thus, these hormones appear unlikely to be major direct contributors to diseases such as hepatic lipidosis or hyperlipemia. Although administration of hydrocortisone reduced serum concentration of fatty acids in feed-restricted llamas, its use has not been evaluated in sick camelids and cannot be considered therapeutically useful. ( Am J Vet Res 2004;65:1002–1005)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the effects of prolonged feed deprivation on glucose tolerance, insulin secretion, and lipid homeostasis in llamas.

Animals—9 adult female llamas.

Procedure—On each of 2 consecutive days, food was withheld from the llamas for 8 hours. Blood samples were collected before and 5, 15, 30, 45, 60, 120, and 240 minutes after IV injection of dextrose (0.5 g/kg) for determination of plasma insulin and serum glucose, triglyceride, and nonesterified fatty acid concentrations. Between experimental periods, the llamas received supplemental amino acids IV (185 mg/kg in solution). The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 23 days, after which the experimental procedures were repeated.

Results—Feed restriction decreased glucose tolerance and had slight effects on insulin secretion in llamas. Basal lipid fractions were higher after feed restriction, but dextrose administration resulted in similar reductions in serum lipid concentrations with and without feed restriction. Insulin secretion was decreased on the second day of each study period, which lessened reduction of serum lipid concentrations but did not affect glucose tolerance.

Conclusions and Clinical Relevance—Despite having a comparatively competent pancreatic response, feed-restricted llamas assimilated dextrose via an IV bolus more slowly than did llamas on full rations. However, repeated administration of dextrose reduced insulin secretion and could promote hyperglycemia and fat mobilization. These findings suggested that veterinarians should use alternative methods of supplying energy to camelids with long-term reduced feed intake or consider administering agents to improve the assimilation of glucose. ( Am J Vet Res 2004;65:996–1001)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To describe the microanatomic features of pancreatic islets and the immunohistochemical distribution of glucose transporter (GLUT) molecules in the pancreas and other tissues of New World camelids.

Animals—7 healthy adult New World camelids, 2 neonatal camelids with developmental skeletal abnormalities, and 2 BALB/c mice.

Procedure—Samples of pancreas, liver, skeletal muscle, mammary gland, brain, and adipose tissue were collected postmortem from camelids and mice. Pancreatic tissue sections from camelids were assessed microscopically. Sections of all tissues from camelids and mice (positive control specimens) were examined after staining with antibodies against GLUT-1, -2, -3, and -4 molecules.

Results—In camelids, pancreatic islets were prominent and lacked connective tissue capsules. Numerous individual endocrine-type cells were visible distant from the islets. Findings in neonatal and adult tissues were similar; however, the former appeared to have more non–islet-associated endocrine cells. Via immunostaining, GLUT-2 molecules were detected on pancreatic endocrine cells and hepatocytes in camelids, GLUT-1 molecules were detected on the capillary endothelium of the CNS, GLUT-3 molecules were detected throughout the gray matter, and GLUT-4 molecules were not detected in any camelid tissues. Staining characteristics of neonatal and adult tissues were similar.

Conclusions and Clinical Relevance—In New World camelids, microanatomic features of pancreatic islets are similar to those of other mammals. Data suggest that the poor glucose clearance and poor insulin response to hyperglycemia in adult camelids cannot be attributed to a lack of islet cells or lack of GLUT molecules on the outer membrane of those cells.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the osseous structures of the external acoustic meatus, tympanic cavity, and tympanic bulla of llamas (Lama glama) by use of computed tomography (CT) and establish measurement values for use in detection of abnormalities associated with the external or middle ear in llamas.

Animals—10 adult llama heads without any evidence of ear disease.

Procedures—Heads of 10 healthy llamas euthanized by use of a captive bolt striking the dorsal aspect of the skull were collected. Transverse images of the heads were acquired with 1-mm slice thickness, and images were reconstructed in sagittal and dorsal planes. Measurements of the bony structures of the external and middle ear of each head were obtained.

Results—The osseous external acoustic meatus curved ventrally as it tracked medially. Its narrowest portion was located at the level of the tympanic annulus. The tympanic bulla conformation differed widely from the bubble-shaped tympanic bulla in dogs and cats. The bulla was divided by the stylohyoid fossa into a larger caudolateral and a smaller caudomedial process; its interior had a honeycombed structure with pneumatized cells similar to the honeycombed appearance of the human mastoid process.

Conclusions and Clinical Relevance—Results provided new information regarding the shape and dimensions of the osseous external and middle ear structures in adult llamas without ear disease. Specific landmarks for location of the external acoustic meatus, tympanic cavity, and tympanic bulla in relation to each other were identified. Knowledge of the CT appearance of normal structures will help clinicians to identify changes attributable to middle ear otitis, external ear canal stenosis, or congenital malformations of the ear in this species.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques.

Animals—8 llamas and 8 alpacas.

Procedures—Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout.

Results—Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species.

Conclusions and Clinical Relevance—New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare numbers of L cells in intestinal samples and blood concentrations of glucagon-like peptide (GLP)-1 between neonatal and mature alpacas.

Sample—Intestinal samples from carcasses of 4 suckling crias and 4 postweaning alpacas for immunohistochemical analysis and blood samples from 32 suckling crias and 19 healthy adult alpacas for an ELISA.

Procedures—Immunohistochemical staining was conducted in accordance with Oregon State University Veterinary Diagnostic Laboratory standard procedures with a rabbit polyclonal anti–GLP-1 primary antibody. Stained cells with staining results in ileal tissue were counted in 20 fields by 2 investigators, and the mean value was calculated. For quantification of GLP-1 concentrations, blood samples were collected into tubes containing a dipeptidyl peptidase-4 inhibitor. Plasma samples were tested in duplicate with a commercial GLP-1 ELISA validated for use in alpacas.

Results—Counts of stained cells (mean ± SD, 50 ± 18 cells) and plasma GLP-1 concentrations (median, 0.086 ng/mL; interquartile range, 0.061 to 0.144 ng/mL) were higher for suckling alpacas than for postsuckling alpacas (stained cells, 26 ± 4 cells; plasma GLP-1 concentration, median, 0.034 ng/mL; interquartile range, 0.015 to 0.048 ng/mL).

Conclusions and Clinical Relevance—Older alpacas had lower numbers of L cells in intestinal tissues and lower blood concentrations of GLP-1 than those in neonates. These findings suggested that there may be a decrease in the contribution of GLP-1 to insulin production in adult alpacas, compared with the contribution in neonates.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To develop a PCR assay for Candidatus Mycoplasma haemolamae (CMhl) infection in alpacas and use it to study the efficacy of oxytetracycline treatment and development of a subclinical carrier state.

Animals—8 healthy adult alpacas.

Procedures—Alpacas initially had negative results for CMhl in blood samples via PCR assay and were experimentally infected with CMhl; 4 were treated with oxytetracycline, and 4 were not treated. All were monitored regularly via PCR assay, blood smear examination, PCV, rectal temperature, and physical examination. At 6 months after treatment, all alpacas were immunosuppressed by administration of dexamethasone and tested for CMhl.

Results—7 of 8 alpacas had positive PCR assay results 4 to 6 days after experimental infection. When organisms were detectable on a blood smear, they were seen 2 to 6 days after positive results of PCR assay. Infection was often associated with mild anemia that was usually transient. No alpacas became hypoglycemic. Oxytetracycline treatment was not associated with faster clearance of organisms or resolution of anemia, and 4 of 4 treated alpacas still had positive results of PCR assay when immunosuppressed 6 months later; 0 of 3 nontreated alpacas had positive results of PCR assay following immunosuppression. Transient fever was detected in 3 alpacas during immunosuppression.

Conclusions and Clinical Relevance—The PCR assay was more sensitive than blood smear examination for detection of infection. Clinical signs, anemia, and fever were not necessarily associated with infection. Oxytetracyline administration did not consistently clear CMhl infection. Although treated with oxytetracycline, infected alpacas remained chronic carriers.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate signalment, history, clinical and pathologic findings, and seasonal weather patterns in association with fatal gastrointestinal parasitism in goats.

Design—Retrospective case series.

Animals—152 goats that were > 1 day of age.

Procedures—Characteristics including age and counts of coccidia oocysts and trichostrongyle ova (eggs) per gram of feces (EPG) in goats that died because of gastrointestinal parasitism and goats that died because of other causes were compared. Weather data and annual incidence of caprine fatal gastrointestinal parasitism were investigated.

Results—Death was attributed to gastrointestinal parasitism in 31 of 152 (20%) goats (median age, 5 months; range, 1 month to 7 years); deaths were attributed to coccidiosis (n = 7 goats; median age, 4 months; median EPG, 2,225), trichostrongylosis (6 goats; median age, 1.25 years; median EPG, 3,700), or dual infection (18 goats; median age, 6.7 months; median EPG, 8,088 coccidia and 5,475 trichostrongyles). Sudden onset of weakness or death was a common historical finding; diarrhea was evident in 15 goats. Common postmortem findings in these goats included cachexia, tissue pallor, poorly formed feces, and mesenteric lymphadenomegaly. Wet weather in spring and summer was associated with increased annual incidence of fatal gastrointestinal parasitism in goats.

Conclusions and Clinical Relevance—Gastrointestinal parasitism is an important cause of death in goats. Clinical signs may not develop until just prior to death, and diagnosis is achieved via parasitologic evaluation of feces and necropsy. Seasonal weather patterns should be considered on an annual basis when designing parasite control programs for goats.

Full access
in Journal of the American Veterinary Medical Association