Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Ronaldo C. da Costa x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To establish the reference ranges for motor evoked potential (MEP) latency and amplitude in clinically normal Doberman Pinschers, compare the MEPs of Doberman Pinschers with and without clinical signs of cervical spondylomyelopathy (CSM; wobbler syndrome), and determine whether MEP data correlate with neurologic or magnetic resonance imaging (MRI) findings.

Animals—16 clinically normal and 16 CSM-affected Doberman Pinschers.

Procedures—Dogs were classified according to their neurologic deficits. After sedation with acepromazine and hydromorphone, transcranial magnetic MEPs were assessed in each dog; latencies and amplitudes were recorded from the extensor carpi radialis and cranial tibial muscles. Magnetic resonance imaging was performed to evaluate the presence and severity of spinal cord compression.

Results—Significant differences in cranial tibial muscle MEP latencies and amplitudes were detected between clinically normal and CSM-affected dogs. No differences in the extensor carpi radialis MEP were detected between groups. There was a significant correlation (r = 0.776) between the cranial tibial muscle MEP latencies and neurologic findings. Significant correlations were also found between MRI findings and the cranial tibial muscle MEP latencies (r = 0.757) and amplitudes (r = −0.453).

Conclusions and Clinical Relevance—Results provided a reference range for MEPs in clinically normal Doberman Pinschers and indicated that cranial tibial muscle MEP latencies correlated well with both MRI and neurologic findings. Because of the high correlation between cranial tibial muscle MEP data and neurologic and MRI findings, MEP assessment could be considered as a screening tool in the management of dogs with spinal cord disease.

Full access
in American Journal of Veterinary Research


OBJECTIVE To characterize and compare gait variables in Doberman Pinschers with and without cervical spondylomyelopathy (CSM).

ANIMALS 18 Doberman Pinschers (9 clinically normal dogs and 9 CSM-affected dogs).

PROCEDURES A neurologic examination was performed on all dogs. The diagnosis of CSM was confirmed with MRI. Temporospatial and kinetic gait variables were measured by use of a pressure-sensitive walkway. Temporospatial variables evaluated included stance phase duration, swing phase duration, gait cycle duration, stride length, and gait velocity. Kinetic variables evaluated included peak vertical force and vertical impulse. Random-effects linear regression was used to determine the difference between CSM-affected and clinically normal dogs for each of the 7 variables.

RESULTS Values for temporospatial variables were significantly smaller in the thoracic limbs of CSM-affected dogs, compared with values for the thoracic limbs of clinically normal dogs. For the kinetic variables, peak vertical force was significantly higher in the thoracic limbs than the pelvic limbs for all dogs. Vertical impulse values were higher in the thoracic limbs than the pelvic limbs. There were significant differences in mean vertical impulse between the thoracic and pelvic limbs for both groups.

CONCLUSIONS AND CLINICAL RELEVANCE In this study, significant differences in temporospatial variables were identified between the thoracic limbs of clinically normal and CSM-affected dogs, with the values being smaller for the CSM-affected dogs than for the clinically normal dogs. A pressure-sensitive walkway may provide a valid, practical option for rapid, objective assessment of gait and response to treatment in dogs with CSM.

Full access
in American Journal of Veterinary Research