Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Patrick R. Kircher x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine the effects of body position and extension of the neck and extremities on CT measurements of ventilated lung volume in red-eared slider turtles (Trachemys scripta elegans).

Design—Prospective crossover-design study.

Animals—14 adult red-eared slider turtles.

Procedures—CT was performed on turtles in horizontal ventral recumbent and vertical left lateral recumbent, right lateral recumbent, and caudal recumbent body positions. In sedated turtles, evaluations were performed in horizontal ventral recumbent body position with and without extension of the neck and extremities. Lung volumes were estimated from helical CT images with commercial software. Effects of body position, extremity and neck extension, sedation, body weight, and sex on lung volume were analyzed.

Results—Mean ± SD volume of dependent lung tissue was significantly decreased in vertical left lateral (18.97 ± 14.65 mL), right lateral (24.59 ± 19.16 mL), and caudal (9.23 ± 12.13 mL) recumbent positions, compared with the same region for turtles in horizontal ventral recumbency (48.52 ± 20.08 mL, 50.66 ± 18.08 mL, and 31.95 ± 15.69 mL, respectively). Total lung volume did not differ among positions because of compensatory increases in nondependent lung tissue. Extension of the extremities and neck significantly increased total lung volume (127.94 ± 35.53 mL), compared with that in turtles with the head, neck, and extremities withdrawn into the shell (103.24 ± 40.13 mL).

Conclusions and Clinical Relevance—Vertical positioning of red-eared sliders significantly affected lung volumes and could potentially affect interpretation of radiographs obtained in these positions. Extension of the extremities and neck resulted in the greatest total lung volume.

Full access
in Journal of the American Veterinary Medical Association


OBJECTIVE To compare stroke volume (SV) calculated on the basis of cardiac morphology determined by MRI and results of phase-contrast angiography (PCA) of ventricular inflow and outflow in dogs.

ANIMALS 10 healthy Beagles.

PROCEDURES Cardiac MRI was performed twice on each Beagle. Cine gradient echo sequences of both ventricles in short-axis planes were used for morphological quantification of SVs by assessment of myocardial contours. From the long-axis plane, SVs in 4-chamber and left ventricular 2-chamber views were acquired at end diastole and end systole. For calculation of SV on the basis of blood flow, PCA was performed for cardiac valves.

RESULTS Mean ± SD values for SV quantified on the basis of blood flow were similar in all valves (aortic, 17.8 ± 4.1 mL; pulmonary, 17.2 ± 5.4 mL; mitral, 17.2 ± 3.9 mL; and tricuspid, 16.9 ± 5.1 mL). Morphological quantification of SV in the short-axis plane yielded significant differences between left (13.4 ± 2.7 mL) and right (8.6 ± 2.4 mL) sides. Morphological quantification of left ventricular SV in the long-axis plane (15.2 ± 3.3 mL and 20.7 ± 3.8 mL in the 4- and 2-chamber views) yielded variable results, which differed significantly from values for flow-based quantification, except for values for the morphological 4-chamber view and PCA for the atrioventricular valves, for which no significant differences were identified.

CONCLUSIONS AND CLINICAL RELEVANCE In contrast to quantification based on blood flow, calculation on the basis of morphology for the short-axis plane significantly underestimated SV, probably because of through-plane motion and complex right ventricular anatomy.

Full access
in American Journal of Veterinary Research



To describe diffusion and perfusion characteristics of the prostate gland of healthy sexually intact adult dogs as determined by use of diffusion-weighted and perfusion-weighted MRI.


12 healthy sexually intact adult Beagles.


Ultrasonography of the prostate gland was performed. Subsequently, each dog was anesthetized, and morphological, diffusion-weighted, and perfusion-weighted MRI of the caudal aspect of the abdomen was performed. The apparent diffusion coefficient was calculated for the prostate gland parenchyma in diffusion-weighted MRI images in the central ventral and peripheral dorsal areas. Perfusion variables were examined in multiple regions of interest (ROIs) in the ventral and dorsal areas of the prostate gland and in the gluteal musculature. Signal intensity was determined, and a time-intensity curve was generated for each ROI.


Results of ultrasonographic examination of the prostate gland revealed no abnormalities for any dog. Median apparent diffusion coefficient of the prostate gland was 1.51 × 10−3 mm2/s (range, 1.04 × 10−3 mm2/s to 1.86 × 10−3 mm2/s). Perfusion-weighted MRI variables for the ROIs differed between the prostate gland parenchyma and gluteal musculature.


Results provided baseline information about diffusion and perfusion characteristics of the prostate gland in healthy sexually intact adult dogs. Additional studies with dogs of various ages and breeds, with and without abnormalities of the prostate gland, will be necessary to validate these findings and investigate clinical applications.

Full access
in American Journal of Veterinary Research


OBJECTIVE To compare values of CT-derived glomerular filtration rate (GFR) determined by 3 contrast-medium injection protocols and 4 measurement techniques in healthy Beagles.

ANIMALS 9 healthy Beagles (mean ± SD weight, 13.2 ± 1.6 kg).

PROCEDURES Each dog underwent 3 iohexol-injection protocols (700 mg of iodine/kg administered at a constant rate over 20 seconds, 700 mg of iodine/kg administered following an exponentially decelerated injection over 20 seconds, and 350 mg of iodine/kg at a constant rate over 10 seconds) during dynamic, whole renal-volume CT in randomized order with an interval of ≥ 7 days between experiments. Values of GFR determined from Patlak plots derived by use of 4 measurement techniques (standard transverse section, optimized transverse section, dorsal reconstruction, and volume calculation techniques) were compared.

RESULTS The measurement technique influenced the mean ± SD GFR results (standard transverse section technique, 2.49 ± 0.54 mL/kg/min; optimized transverse section technique, 2.72 ± 0.52 mL/kg/min; dorsal reconstruction technique, 3.00 ± 0.60 mL/kg/min, and volume calculation technique, 2.48 ± 0.51 mL/kg/min). The lower iodine dose resulted in a significantly higher GFR value (3.00 ± 0.65 mL/kg/min), compared with that achieved with either higher dose administration (constant rate injection, 2.54 ± 0.45 mL/kg/min and exponentially decelerated injection, 2.47 ± 0.48 mL/kg/min).

CONCLUSIONS AND CLINICAL RELEVANCE In healthy Beagles, the CT-derived GFR measurements obtained after injection of a full dose of contrast medium were reduced, compared with measurements obtained after injection of a half dose. This finding is important with regard to potential nephrotoxicosis in dogs with impaired renal function and for GFR measurement with CT-contrast medium protocols.

Full access
in American Journal of Veterinary Research


Objective—To compare ultrasonographic and histologic examination findings for eyes of animals with ocular diseases.

Design—Retrospective case series.

Animals—116 eyes of 113 animals examined at 2 facilities.

Procedures—Diseased eyes of animals were examined by means of ultrasonography, removed via enucleation or exenteration, then histologically examined. Ultrasonographic images and histopathologic slides were evaluated, and diseases of eyes were identified with each of those methods and allocated to various categories. For each disease category, agreement between results of ultrasonography and those of histologic examination was assessed via determination of κ statistic values.

Results—Tests had good agreement for identification of iris or ciliary body neoplasia. Overall, intraocular neoplasia was not detected via ultrasonography for only 2 of 31 eyes with histologically detected neoplasia. Hemorrhagic or inflammatory changes were misinterpreted as neoplasia for 8 of 37 (22%) eyes. Tests had moderate to acceptable agreement for identification of retinal detachment. Retinal detachment was not detected by means of ultrasonography for 14 of 38 (37%) eyes with that diagnosis determined via histologic examination at one of the facilities (primarily in eyes with intraocular hemorrhage); however, retinal detachment was not identified via histologic examination for 6 of 38 (16%) eyes with that diagnosis determined via ultrasonography at the other facility.

Conclusions and Clinical Relevance—Agreement between tests evaluated in this study was clinically satisfactory for identification of intraocular neoplasia. Typically, diseases were misdiagnosed via ultrasonography for eyes with poor image contrast. Because determination of ultrasonographic diagnoses of retinal detachment and intraocular neoplasm may be of prognostic importance, performance of additional ultrasonographic techniques may be indicated.

Full access
in Journal of the American Veterinary Medical Association