Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Murli Manohar x
  • Refine by Access: All Content x
Clear All Modify Search

Summary

Tracheal, bronchial, and renal blood flow were studied in 8 healthy ponies at rest and during exercise performed on a treadmill at a speed setting of 20.8 km/h and 7% grade (incline) for 30 minutes. Blood flow was determined with 15-μm-diameter radionuclide-labeled microspheres that were injected into the left ventricle when the ponies were at rest, and at 5, 15, and 26 minutes of exertion. Heart rate and mean aortic pressure increased from resting values (40 ± 2 beats/min and 124 ± 3 mm of Hg, respectively) to 152 ± 8 beats/min and 133 ± 4 mm of Hg at 5 minutes of exercise, to 169 ± 6 beats/min and 143 ± 5 mm of Hg at 15 minutes of exercise, and to 186 ± 8 beats/min, and 150 ± 5 mm of Hg at 26 minutes of exercise. Tracheal blood flow at rest and during exercise remained significantly (P < 0.05) less than bronchial blood flow. Tracheal blood flow increased only slightly with exercise. Vasodilation caused bronchial blood flow to increase throughout exercise. Pulmonary arterial blood temperature of ponies also increased significantly (P < 0.05) with exercise and a significant (P < 0.005) correlation was found between bronchial blood flow and pulmonary arterial blood temperature during exertion. At 5 minutes of exercise, renal blood flow was unchanged from the resting value; however, renal vasoconstriction was observed at 15 and 26 minutes of exercise. We concluded that bronchial circulation of ponies increased with exercise in close association with a rise in pulmonary arterial blood temperature. Also, increased thermal burden necessitated redistribution of blood flow away from kidneys late in exercise.

Free access
in American Journal of Veterinary Research

SUMMARY

Experiments were carried out on 8 healthy ponies to examine the effects of prolonged submaximal exercise on regional distribution of brain blood flow. Brain blood flow was ascertained by use of 15-μm-diameter radionuclide-labeled microspheres injected into the left ventricle. The reference blood was withdrawn from the thoracic aorta at a constant rate of 21.0 ml/min. Hemodynamic data were obtained with the ponies at rest (control), and at 5, 15, and 26 minutes of exercise performed at a speed setting of 13 mph on a treadmill with a fixed incline of 7%. Exercise lasted for 30 minutes and was carried out at an ambient temperature of 20 C. Heart rate, mean arterial pressure, and core temperature increased significantly with exercise. With the ponies at rest, a marked heterogeneity of perfusion was observed within the brain; the cerebral, as well as cerebellar gray matter, had greater blood flow than in the respective white matter, and a gradually decreasing gradient of blood flow existed from thalamus-hypothalamus to medulla. This pattern of perfusion heterogeneity was preserved during exercise. Regional brain blood flow at 5 and 15 minutes of exercise remained similar to resting values. However, at 26 minutes of exercise, vasoconstriction resulted in a significant reduction in blood flow to all cerebral and brain-stem regions. In the cerebellum, the gray matter blood flow and vascular resistance remained near control values even at 26 minutes of exercise. Vasoconstriction in various regions of the cerebrum and brainstem at 26 minutes of exertion may have occurred in response to exercise-induced hypocapnia, arterial hypertension, and/or sympathetic neural activation.

Free access
in American Journal of Veterinary Research