Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Lisa Reynolds x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To compare ground reaction forces (GRFs) measured by use of a pressure-sensitive walk-way (PSW) and a force plate (FP) and evaluate weekly variation in the GRFs and static vertical forces in dogs.

Animals—34 clinically normal dogs and 5 research dogs with lameness.

Procedure—GRF data were collected from 5 lame and 14 clinically normal dogs by use of an FP and a PSW. Peak vertical force (PVF), vertical impulse (VI), and velocity measurements (determined by use of photocells and PSW data) were compared between groups. Peak vertical force, VI, stride length, ground phase time (ie, contact time), and static body weight distribution data were collected on 2 occasions, 1 week apart, in 20 different clinically normal dogs by use of a PSW; week-to-week variation in values was evaluated.

Results—Measurements of velocity derived by use of the photocells were not different from those derived by use of the PSW. For any 1 limb, values derived by use of the PSW were significantly lower than values derived with the FP. For values obtained by use of either technique, there were no differences between left and right limbs except for values of PVF measured via PSW in forelimbs. Values of PVF, VI, contact time, stride length, and static weight distribution generated by the PSW did not vary from week to week.

Conclusions and Clinical Relevance—Values for GRFs varied between the FP and PSW. However, data derived by use of PSW were consistent and could be used to evaluate kinetic variables over time in the same dog.

Full access
in American Journal of Veterinary Research


Objective—To investigate the ability of perzinfotel (an N-methyl-d-aspartate receptor antagonist) and a proprietary phospholipase A2 (PLA2) inhibitor to attenuate lameness in dogs with sodium urate (SU)–induced synovitis.

Animals—8 adult dogs.

Procedures—A blinded 4-way crossover study was performed. Dogs received perzinfotel (10 mg/kg), a proprietary PLA2 inhibitor (10 mg/kg), carprofen (4.4 mg/kg; positive control treatment), or no treatment (negative control treatment). On the fourth day after initiation of treatment, synovitis was induced via intra-articular injection of SU 1 hour before administration of the last treatment dose. Ground reaction forces were measured and clinical lameness evaluations were performed before (baseline [time 0]) and 2, 4, 6, 8, 12, and 25 hours after SU injection. There was a 21-day washout period between subsequent treatments. Data were analyzed via repeated-measures ANOVAs.

Results—Peak vertical force (PVF) and vertical impulse (VI) values for negative control and perzinfotel treatments were significantly lower at 2 and 4 hours, compared with baseline values. Values for PVF and VI for the PLA2 inhibitor and positive control treatments did not differ from baseline values at any time points. Between-treatment comparisons revealed significantly higher PVF and VI values for the positive control treatment than for the negative control and perzinfotel treatments at 2 and 4 hours. Values for VI were higher for PLA2 inhibitor treatment than for negative control treatment at 2 hours.

Conclusions and Clinical Relevance—Perzinfotel did not significantly alter SU–induced lameness. The proprietary PLA2 inhibitor attenuated lameness but not as completely as did carprofen.

Full access
in American Journal of Veterinary Research