Search Results
You are looking at 11 - 20 of 28 items for
- Author or Editor: Lisa A. Tell x
- Refine by Access: All Content x
Abstract
OBJECTIVE To determine the pharmacokinetics and adverse effects at the injection site of ceftiofur crystalline-free acid (CCFA) following IM administration of 1 dose to red-tailed hawks (Buteo jamaicensis).
ANIMALS 7 adult nonreleasable healthy red-tailed hawks.
PROCEDURES In a randomized crossover study, CCFA (10 or 20 mg/kg) was administered IM to each hawk and blood samples were obtained. After a 2-month washout period, administration was repeated with the opposite dose. Muscle biopsy specimens were collected from the injection site 10 days after each sample collection period. Pharmacokinetic data were calculated. Minimum inhibitory concentrations of ceftiofur for various bacterial isolates were assessed.
RESULTS Mean peak plasma concentrations of ceftiofur-free acid equivalent were 6.8 and 15.1 μg/mL for the 10 and 20 mg/kg doses, respectively. Mean times to maximum plasma concentration were 6.4 and 6.7 hours, and mean terminal half-lives were 29 and 50 hours, respectively. Little to no muscle inflammation was identified. On the basis of a target MIC of 1 μg/mL and target plasma ceftiofur concentration of 4 μg/mL, dose administration frequencies for infections with gram-negative and gram-positive organisms were estimated as every 36 and 45 hours for the 10 mg/kg dose and every 96 and 120 hours for the 20 mg/kg dose, respectively.
CONCLUSIONS AND CLINICAL RELEVANCE Study results suggested that CCFA could be administered IM to red-tailed hawks at 10 or 20 mg/kg to treat infections with ceftiofur-susceptible bacteria. Administration resulted in little to no inflammation at the injection site. Additional studies are needed to evaluate effects of repeated CCFA administration.
Abstract
Objective—To determine the pharmacokinetics of ceftiofur crystalline-free acid (CCFA) following SC administration of a single dose to sheep.
Animals—9 healthy adult female Suffolk-crossbred sheep.
Procedures—Each sheep was administered 6.6 mg of CCFA/kg, SC, in the cervical region once. Serial blood samples were collected at predetermined intervals for 14 days. Serum concentration of ceftiofur free-acid equivalents (CFAE) was determined by high-performance liquid chromatography. Pharmacokinetic parameters were determined by compartmental and noncompartmental methods.
Results—Pharmacokinetics for CCFA following SC administration in sheep was best described with a 1-compartment model. Mean ± SD area under the concentration-time curve from time 0 to infinity, peak serum concentration, and time to peak serum concentration were 206.6 ± 24.8 μ•h/mL, 2.4 ± 0.5 μg/mL, and 23.1 ± 10.1 h, respectively. Serum CFAE concentrations ≥ 1 μg/mL (the target serum CFAE concentration for treatment of disease caused by Mannheimia haemolytica and Pasteurella multocida) were maintained for 2.6 to 4.9 days. No significant adverse reactions to CCFA administration were observed.
Conclusions and Clinical Relevance—Results indicated that adequate therapeutic serum concentrations of CFAE for treatment of disease caused by M haemolytica and P multocida were achieved in sheep following SC administration of a single dose (6.6 mg/kg) of CCFA. Thus, CCFA might be useful for the treatment of common respiratory tract pathogens in sheep.
Abstract
Objective—To determine the pharmacokinetics of ceftiofur sodium after IM and SC administration in green iguanas.
Animals—6 male and 4 female adult green iguanas.
Procedure—In a crossover design, 5 iguanas received a single dose of ceftiofur sodium (5 mg/kg) IM, and 5 iguanas received the same dose SC. Blood samples were taken at 0, 20, and 40 minutes and 1, 2, 4, 8, 24, 48, and 72 hours after administration. After a 10-week washout period, each iguana was given the same dose via the reciprocal administration route, and blood was collected in the same fashion. Ceftiofur free-acid equivalents were measured via high-performance liquid chromatography.
Results—The first phase intercepts were significantly different between the 2 administration routes. Mean maximum plasma concentration was significantly higher with the IM (28.6 ± 8.0 µg/mL) than the SC (18.6 ± 8.3 µg/mL) administration route. There were no significant differences between terminal halflives (harmonic mean via IM route, 15.7 ± 4.7 hours; harmonic mean via SC route, 19.7 ± 6.7 hours) and mean areas under the curve measured to the last time point (IM route, 11,722 ± 7,907 µg·h/mL; SC route, 12,143 ± 9,633 µg·h/mL). Ceftiofur free-acid equivalent concentrations were maintained ≥ 2 µg/mL for > 24 hours via both routes.
Conclusions and Clinical Relevance—A suggested dosing schedule for ceftiofur sodium in green iguanas for microbes susceptible at > 2 µg/mL would be 5 mg/kg, IM or SC, every 24 hours. (Am J Vet Res 2003;64:1278–1282)
Abstract
Objective—To determine the stability and distribution of voriconazole in 2 extemporaneously prepared (compounded) suspensions stored for 30 days at 2 temperatures.
Sample Population—Voriconazole suspensions (40 mg/mL) compounded from commercially available 200-mg tablets suspended in 1 of 2 vehicles. One vehicle contained a commercially available suspending agent and a sweetening syrup in a 1:1 mixture (SASS). The other vehicle contained the suspending agent with deionized water in a 3:1 mixture (SADI).
Procedures—Voriconazole suspensions (40 mg/mL in 40-mL volumes) were compounded on day 0 and stored at room temperature (approx 21°C) or refrigerated (approx 5°C). To evaluate distribution, room-temperature aliquots of voriconazole were measured immediately after preparation. Refrigerated aliquots were measured after 3 hours of refrigeration. To evaluate stability, aliquots from each suspension were measured at approximately 7-day intervals for up to 30 days. Voriconazole concentration, color, odor, opacity, and pH were measured, and aerobic and anaerobic bacterial cultures were performed at various points.
Results—Drug distribution was uniform (coefficient of variation, < 5%) in both suspensions. On day 0, 87.8% to 93.0% of voriconazole was recovered; percentage recovery increased to between 95.1% and 100.8% by day 7. On subsequent days, up to day 30, percentage recovery was stable (> 90%) for all suspensions. The pH of each suspension did not differ significantly throughout the 30-day period. Storage temperature did not affect drug concentrations at any time, nor was bacterial growth obtained.
Conclusions and Clinical Relevance—Extemporaneously prepared voriconazole in SASS and SADI resulted in suspensions that remained stable for at least 30 days. Refrigerated versus room-temperature storage of the suspensions had no effect on drug stability.
Abstract
OBJECTIVE
To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US.
ANIMALS
204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021.
PROCEDURES
Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners.
RESULTS
Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs.
CLINICAL RELEVANCE
Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.