Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Karen C. Scott x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objectives—To determine the effects of racing and training on serum thyroxine (T4), triiodothyronine (T3), and thyroid stimulating hormone (TSH) concentrations in Greyhounds.

Animals—9 adult racing Greyhounds.

Procedure—Serum thyroid hormone concentrations were measured before and 5 minutes after a race in dogs trained to race 500m twice weekly for 6 months. Resting concentrations were measured again when these dogs had been neutered and had not raced for 3 months. Postrace concentrations were adjusted relative to albumin concentration to allow for effects of hemoconcentration. Thyroid hormone concentrations were then compared with those of clinically normal dogs of non-Greyhound breeds.

Results—When adjusted for hemoconcentration, total T4 concentrations increased significantly after racing and TSH concentrations decreased; however, there was no evidence of a change in free T4 or total or free T3 concentrations. Resting total T4 concentrations increased significantly when dogs had been neutered and were not in training. There was no evidence that training and neutering affected resting TSH, total or free T3, or free T4 concentrations. Resting concentrations of T3, TSH, and autoantibodies against T4, T3, and thyroglobulin were similar to those found in other breeds; however, resting free and total T4 concentrations were lower than those found in other breeds.

Conclusions and Clinical Relevance—Except for total T4, thyroid hormone concentrations in Greyhounds are affected little by sprint racing and training. Greyhounds with low resting total and free T4 concentrations may not be hypothyroid. (Am J Vet Res 2001;62:1969–1972)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of increased dietary protein and decreased dietary carbohydrate on hematologic variables, body composition, and racing performance in Greyhounds.

Animals—8 adult Greyhounds.

Procedure—Dogs were fed a high-protein (HP; 37% metabolizable-energy [ME] protein, 33% ME fat, 30% ME carbohydrate) or moderate-protein (MP; 24% ME protein, 33% ME fat, 43% ME carbohydrate) extruded diet for 11 weeks. Dogs subsequently were fed the other diet for 11 weeks (crossover design). Dogs raced a distance of 500 m twice weekly. Rectal temperature, hematologic variables before and after racing, plasma volume, total body water, body weight, average weekly food intake, and race times were measured at the end of each diet period.

Results—When dogs were fed the MP diet, compared with the HP diet, values (mean ± SD) differed significantly for race time (32.43 ± 0.48 vs 32.61 ± 0.50 seconds), body weight (32.8 ± 2.5 vs 32.2 ± 2.9 kg), Hct before (56 ± 4 vs 54 ± 6%) and after (67 ± 3 vs 64 ± 8%) racing, and glucose (131 ± 16 vs 151 ± 27 mg/dl) and triglyceride (128 ± 17 vs 104 ± 28 mg/dl) concentrations after racing.

Conclusions and Clinical Relevance—Greyhounds were 0.18 seconds slower (equivalent to 0.08 m/s or 2.6 m) over a distance of 500 m when fed a diet with increased protein and decreased carbohydrate. Improved performance attributed to feeding meat to racing Greyhounds apparently is not attributable to increased dietary protein and decreased dietary carbohydrate. (Am J Vet Res 2001;62:440–447)

Full access
in American Journal of Veterinary Research
Tending Animals in the Global Village—A Guide to International Veterinary Medicine . . . . Import Risk Analysis: Animals and Animal Products . . . . Exotic Pests & Disease: Biology and Economics for Biosecurity . . . . Borna Disease Virus and Its Role in Neurobehavioral Disease . . . . Foot and Mouth Disease: Facing the New Dilemmas . . . . Trends in Emerging Viral Infections of Swine . . . . Clinical Examination of Farm Animals . . . . Manual of Sheep Diseases (2nd edition) . . . . Mycotoxins: Risks in Plant, Animal, and Human Systems . . . . A Guide to Plant Poisoning of Animals in North America . . . . Diseases of Poultry (11th edition) . . . . Modern Concepts of Immunology in Veterinary Medicine—Poultry Immunology (Advances in Medical and Veterinary Immunology) . . . . Pathology of Pet and Aviary Birds . . . . Birds of Prey: Health and Disease (3rd edition) . . . . Hand-Rearing Wild and Domestic Mammals . . . . Handbook of Wildlife Chemical Immobilization (International Edition) . . . . Veterinary Anesthesia and Pain Management Secrets . . . . The Veterinary ICU Book . . . . Anatomy of the Dog: An Illustrated Text (4th Edition) . . . . The 5-Minute Veterinary Consult Clinical Companion: Small Animal Dermatology . . . . Abdominal Radiology for the Small Animal Practitioner (Made Easy Series) . . . . Two Dimensional and M-Mode Echocardiography for the Small Animal Practitioner (Made Easy Series) . . . . Small Animal Ophthalmology Secrets . . . . Ocular Tumors in Animals and Humans . . . . Feline Oncology: A Comprehensive Guide to Compassionate Care . . . . Veterinary Medicine and Practice 25 Years in the Future and the Economic Steps to Get There
Full access
in Journal of the American Veterinary Medical Association