Search Results

You are looking at 11 - 20 of 50 items for

  • Author or Editor: Joanne Paul-Murphy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the antinociceptive effects and duration of action of nalbuphine HCl administered IM on thermal thresholds in Hispaniolan Amazon parrots (Amazona ventralis).

Animals—14 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—3 doses of nalbuphine (12.5, 25, and 50 mg/kg, IM) and saline (0.9% NaCl) solution (control treatment) were evaluated in a blinded complete crossover experimental design by use of foot withdrawal threshold to a noxious thermal stimulus. Baseline data on thermal threshold were generated 1 hour before administration of nalbuphine or saline solution; thermal threshold measurements were obtained 0.5, 1.5, 3, and 6 hours after administration.

Results—Nalbuphine administered IM at 12.5 mg/kg significantly increased the thermal threshold (mean change, 2.4°C), compared with results for the control treatment, and significantly changed thermal threshold for up to 3 hours, compared with baseline results (mean change, 2.6° to 3.8°C). Higher doses of nalbuphine did not significantly change thermal thresholds, compared with results for the control treatment, but had a significant effect, compared with baseline results, for up to 3 and 1.5 hours after administration, respectively.

Conclusions and Clinical Relevance—Nalbuphine administered IM at 12.5 mg/kg significantly increased the foot withdrawal threshold to a thermal noxious stimulus in Hispaniolan Amazon parrots. Higher doses of nalbuphine did not result in significantly increased thermal thresholds or a longer duration of action and would be expected to result in less analgesic effect than lower doses. Further studies are needed to fully evaluate the analgesic effects of nalbuphine in psittacine species.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the thermal antinociceptive and sedative effects and duration of action of tramadol hydrochloride after oral administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Tramadol (5, 15, and 30 mg/kg) and a control suspension were administered orally in a masked randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 0.5, 1.5, 3, 6, and 9 hours after treatment. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus test.

Results—The lowest dose of tramadol evaluated (5 mg/kg) significantly increased the thermal foot withdrawal thresholds for up to 1.5 hours after administration, compared with control treatment values, and for up to 9 hours after administration, compared with baseline values. Tramadol at doses of 15 and 30 mg/kg significantly increased thermal thresholds at 0.5 hours after administration, compared with control treatment values, and up to 3 hours after administration, compared with baseline values. No significant differences in agitation-sedation scores were detected between tramadol and control treatments.

Conclusions and Clinical Relevance—Results indicated oral administration of 5 mg of tramadol/kg significantly increased thermal nociception thresholds for kestrels for 1.5 hours, compared with a control treatment, and 9 hours, compared with baseline values; higher doses resulted in less pronounced antinociceptive effects. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times would be needed to fully evaluate the analgesic and adverse effects of tramadol in kestrels and other avian species.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of hydromorphone hydrochloride after IV and IM administration in American kestrels (Falco sparverius).

Animals—12 healthy adult American kestrels.

Procedures—A single dose of hydromorphone (0.6 mg/kg) was administered IM (pectoral muscles) and IV (right jugular vein); the time between IM and IV administration experiments was 1 month. Blood samples were collected at 5 minutes, 1 hour, and 3 hours (n = 4 birds); 0.25, 1.5, and 9 hours (4); and 0.5, 2, and 6 hours (4) after drug administration. Plasma hydromorphone concentrations were determined by means of liquid chromatography with mass spectrometry, and pharmacokinetic parameters were calculated with a noncompartmental model. Mean plasma hydromorphone concentration for each time was determined with naïve averaged pharmacokinetic analysis.

Results—Plasma hydromorphone concentrations were detectable in 2 and 3 birds at 6 hours after IM and IV administration, respectively, but not at 9 hours after administration. The fraction of the hydromorphone dose absorbed after IM administration was 0.75. The maximum observed plasma concentration was 112.1 ng/mL (5 minutes after administration). The terminal half-life was 1.25 and 1.26 hours after IV and IM administration, respectively.

Conclusion and Clinical Relevance—Results indicated hydromorphone hydrochloride had high bioavailability and rapid elimination after IM administration, with a short terminal half-life, rapid plasma clearance, and large volume of distribution in American kestrels. Further studies regarding the effects of other doses, other administration routes, constantrate infusions, and slow release formulations on the pharmacokinetics of hydromorphone hydrochloride and its metabolites in American kestrels may be indicated.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration.

Results—Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg.

Conclusion and Clinical Relevance—At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the antinociceptive and sedative effects of tramadol in Hispaniolan Amazon parrots (Amazona ventralis) following IV administration.

Animals—11 healthy Hispaniolan Amazon parrots of unknown sex.

Procedures—Tramadol hydrochloride (5 mg/kg, IV) and an equivalent volume (≤ 0.34 mL) of saline (0.9% NaCl) solution were administered to parrots in a complete crossover study design. Foot withdrawal response to a thermal stimulus was determined 30 to 60 minutes before (baseline) and 15, 30, 60, 120, and 240 minutes after treatment administration; agitation-sedation scores were determined for parrots at each of those times.

Results—The estimated mean changes in temperature from the baseline value that elicited a foot withdrawal response were 1.65° and −1.08°C after administration of tramadol and saline solution, respectively. Temperatures at which a foot withdrawal response was elicited were significantly higher than baseline values at all 5 evaluation times after administration of tramadol and were significantly lower than baseline values at 30, 120, and 240 minutes after administration of saline solution. No sedation, agitation, or other adverse effects were observed in any of the parrots after administration of tramadol.

Conclusions and Clinical Relevance—Tramadol hydrochloride (5 mg/kg, IV) significantly increased the thermal nociception threshold for Hispaniolan Amazon parrots in the present study. Sedation and adverse effects were not observed. These results are consistent with results of other studies in which the antinociceptive effects of tramadol after oral administration to parrots were determined.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the antinociceptive and sedative effects and duration of action of hydromorphone hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—11 healthy 2-year-old American kestrels.

Procedures—Hydromorphone (0.1, 0.3, and 0.6 mg/kg) and an equivalent volume of saline (0.9% NaCl) solution (control treatment) were administered IM to kestrels in a masked randomized complete crossover study design. Foot withdrawal response to a thermal stimulus was determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal test.

Results—Hydromorphone at 0.6 mg/kg, IM, significantly increased the thermal foot withdrawal threshold, compared with the response after administration of saline solution, for up to 3 hours, and hydromorphone at 0.1, 0.3, and 0.6 mg/kg, IM, significantly increased withdrawal responses for up to 6 hours, compared with baseline values. No significant differences in mean sedation-agitation scores were detected between hydromorphone and saline solution treatments; however, appreciable sedation was detected in 4 birds when administered 0.6 mg of hydromorphone/kg.

Conclusions and Clinical Relevance—Hydromorphone at the doses evaluated significantly increased the thermal nociception threshold for American kestrels for 3 to 6 hours. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times are needed to fully evaluate the analgesic and adverse effects of hydromorphone in kestrels and other avian species and the use of hydromorphone in clinical settings.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare pharmacokinetics after IV, IM, and oral administration of a single dose of meloxicam to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—11 healthy parrots.

Procedures—Cohorts of 8 of the 11 birds comprised 3 experimental groups for a crossover study. Pharmacokinetics were determined from plasma concentrations measured via high-performance liquid chromatography after IV, IM, and oral administration of meloxicam at a dose of 1 mg/kg.

Results—Initial mean ± SD plasma concentration of 17.3 ± 9.0 μg/mL was measured 5 minutes after IV administration, whereas peak mean concentration was 9.3 ± 1.8 μg/mL 15 minutes after IM administration. At 12 hours after administration, mean plasma concentrations for IV (3.7 ± 2.5 μg/mL) and IM (3.5 ± 2.2 μg/mL) administration were similar. Peak mean plasma concentration (3.5 ± 1.2 μg/mL) was detected 6 hours after oral administration. Absolute systemic bioavailability of meloxicam after IM administration was 100% but was lower after oral administration (range, 49% to 75%). Elimination half-lives after IV, IM, and oral administration were similar (15.9 ± 4.4 hours, 15.1 ± 7.7 hours, and 15.8 ± 8.6 hours, respectively).

Conclusions and Clinical Relevance—Pharmacokinetic data may provide useful information for use of meloxicam in Hispaniolan Amazon parrots. A mean plasma concentration of 3.5 μg/mL would be expected to provide analgesia in Hispaniolan Amazon parrots; however, individual variation may result in some birds having low plasma meloxicam concentrations after IV, IM, or oral administration. After oral administration, meloxicam concentration slowly reached the target plasma concentration, but that concentration was not sustained in most birds.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate antinociceptive effects and pharmacokinetics of butorphanol tartrate after IM administration to American kestrels (Falco sparverius).

Animals—Fifteen 2- to 3-year-old American kestrels (6 males and 9 females).

Procedures—Butorphanol (1, 3, and 6 mg/kg) and saline (0.9% NaCl) solution were administered IM to birds in a crossover experimental design. Agitation-sedation scores and foot withdrawal response to a thermal stimulus were determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment. For the pharmacokinetic analysis, butorphanol (6 mg/kg, IM) was administered in the pectoral muscles of each of 12 birds.

Results—In male kestrels, butorphanol did not significantly increase thermal thresholds for foot withdrawal, compared with results for saline solution administration. However, at 1.5 hours after administration of 6 mg of butorphanol/kg, the thermal threshold was significantly decreased, compared with the baseline value. Foot withdrawal threshold for female kestrels after butorphanol administration did not differ significantly from that after saline solution administration. However, compared with the baseline value, withdrawal threshold was significantly increased for 1 mg/kg at 0.5 and 6 hours, 3 mg/kg at 6 hours, and 6 mg/kg at 3 hours. There were no significant differences in mean sedation-agitation scores, except for males at 1.5 hours after administration of 6 mg/kg.

Conclusion and Clinical Relevance—Butorphanol did not cause thermal antinociception suggestive of analgesia in American kestrels. Sex-dependent responses were identified. Further studies are needed to evaluate the analgesic effects of butorphanol in raptors.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To describe the prevalence, histologic characteristics, concomitant abnormalities, and outcomes for various types of mammary gland tumors in companion rats (Rattus norvegicus).

DESIGN Retrospective case series.

ANIMALS 100 client-owned rats.

PROCEDURES Medical records of companion rats that had an SC mass and were examined at a veterinary teaching hospital between 1990 and 2015 were reviewed. Information regarding the signalment, age at mass detection, reproductive sterilization status, histologic diagnosis of the SC mass, location of the initial and all subsequent SC masses, treatments administered, and clinical outcomes was extracted from each record and summarized.

RESULTS 105 SC masses were initially detected in 100 rats. The most prevalent SC mass identified was mammary gland fibroadenoma (56/105 [53%]), followed by mammary gland carcinoma (13/105 [12%]). Overall, 26 of 105 (25%) masses were malignant. Sexually intact males were more likely to have nonmammary SC tumors than sexually intact females. In rats receiving no adjunctive treatment after excision of a mammary gland fibroadenoma (n = 16), a second fibroadenoma was detected 1 to 8 months after initial excision, at a median of 4.5 months after surgery. A concomitant pituitary gland tumor was identified in most rats with mammary gland fibroadenoma (21/28 [75%]) and other types of mammary gland tumors (10/17 [59%]). Fourteen of 35 (40%) rats with mammary gland fibroadenoma had concomitant reproductive tract abnormalities.

CONCLUSION AND CLINICAL RELEVANCE Results suggested that, like other species, companion rats with SC masses should undergo a thorough diagnostic workup that includes histologic examination of the excised mass.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the effect of oral administration of melatonin on clinical signs, tumor size, and serum steroid hormone concentrations in ferrets with adrenocortical disease.

Design—Noncontrolled clinical trial.

Animals—10 adult ferrets with clinical signs of adrenocortical disease (confirmed via serum steroid hormone concentration assessments).

Procedures—Melatonin (0.5 mg) was administered orally to ferrets once daily for 1 year. At 4-month intervals, a complete physical examination; abdominal ultrasonographic examination (including adrenal gland measurement); CBC; serum biochemical analyses; and assessment of serum estradiol, androstenedione, and 17α-hydroxyprogesterone concentrations were performed. Serum prolactin and dehydroepiandrosterone sulfate concentrations were evaluated at the first, second, and last examinations, and serum cortisol concentration was evaluated at the first and last examinations.

Results—Daily oral administration of melatonin greatly affected clinical signs of adrenocortical disease in ferrets; changes included hair regrowth, decreased pruritus, increased activity level and appetite, and decreased vulva or prostate size. Mean width of the abnormally large adrenal glands was significantly increased after the 12-month treatment period. Recurrence of clinical signs was detected in 6 ferrets at the 8-month evaluation. Compared with pretreatment values, serum 17α-hydroxyprogesterone and prolactin concentrations were significantly increased and decreased after 12 months, respectively.

Conclusions and Clinical Relevance—Results suggest that melatonin is a useful, easily administered, palliative treatment to decrease clinical signs associated with adrenocortical disease in ferrets, and positive effects of daily treatment were evident for at least an 8-month period. Oral administration of melatonin did not decrease adrenal gland tumor growth in treated ferrets.

Restricted access
in Journal of the American Veterinary Medical Association