Search Results

You are looking at 11 - 12 of 12 items for :

  • Author or Editor: Jan E. Ilkiw x
  • Pharmacology x
  • Refine by Access: All Content x
Clear All Modify Search

SUMMARY

The cardiopulmonary effects of thiopental sodium were studied in hypovolemic dogs from completion of until 1 hour after administration of the drug. Hypovolemia was induced by withdrawal of blood from dogs until mean arterial pressure of 60 mm of Hg was achieved. After stabilization at this pressure for 1 hour, 8 mg of thiopental/kg of body weight was administered iv to 7 dogs, and cardiopulmonary effects were measured. After blood withdrawal and prior to thiopental administration, heart rate and oxygen utilization ratio increased, whereas mean arterial pressure, mean pulmonary arterial pressure, central venous pressure, pulmonary wedge pressure, cardiac index, oxygen delivery, mixed venous oxygen tension, and mixed venous oxygen content decreased from baseline. Three minutes after thiopental administration, heart rate, mean arterial pressure, mean pulmonary arterial pressure, pulmonary vascular resistance, and mixed venous oxygen tension increased, whereas oxygen utilization ratio and arterial and mixed venous pH decreased from values measured prior to thiopental administration. Fifteen minutes after thiopental administration, heart rate was still increased; however by 60 minutes after thiopental administration, all measurements had returned to values similar to those obtained prior to thiopental administration.

Free access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of dexmedetomidine administered as a short-duration IV infusion in isoflurane-anesthetized cats.

Animals—6 healthy adult domestic female cats.

Procedures—Dexmedetomidine hydrochloride was injected IV (10 μg/kg over 5 minutes [rate, 2 μg/kg/min]) in isoflurane-anesthetized cats. Blood samples were obtained immediately prior to and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240, and 480 minutes following the start of the IV infusion. Collected blood samples were transferred to tubes containing EDTA, immediately placed on ice, and then centrifuged at 3,901 × g for 10 minutes at 4°C. The plasma was harvested and stored at −20°C until analyzed. Plasma dexmedetomidine concentrations were determined by means of liquid chromatography–mass spectrometry. Dexmedetomidine plasma concentration-time data were fitted to compartmental models.

Results—A 2-compartment model with input in and elimination from the central compartment best described the disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats. Weighted mean ± SEM apparent volume of distribution of the central compartment and apparent volume of distribution at steady-state were 402 ± 47 mL/kg and 1,701 ± 200 mL/kg, respectively; clearance and terminal half-life (harmonic mean ± jackknife pseudo-SD) were 6.3 ± 2.8 mL/min/kg and 198 ± 75 minutes, respectively. The area under the plasma concentration curve and maximal plasma concentration were 1,061 ± 292 min•ng/mL and 17.6 ± 1.8 ng/mL, respectively.

Conclusions and Clinical Relevance—Disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats was characterized by a moderate clearance and a long terminal half-life.

Full access
in American Journal of Veterinary Research