Search Results

You are looking at 11 - 18 of 18 items for

  • Author or Editor: Guy H. Loneragan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To estimate prevalence of cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) at arrival at a feedlot, prevalence of chronically ill and dead PI cattle, and the magnitude of excess disease attributable to a PI animal.

Design—Cross-sectional and cohort studies.

Animals—2,000 cattle at the time they arrived at a feedlot, 1,383 chronically ill cattle from 7 feedlots, and 1,585 dead cattle from a single feedlot.

Procedure—Skin biopsy specimens were collected and evaluated via immunohistochemistry. Cattle were characterized as either PI or not PI with BVDV on the basis of characteristic immunostaining. Follow-up was obtained for the 2,000 cattle from which samples were collected at arrival, and health outcomes were determined for cattle exposed and not exposed to a PI animal.

Results—Prevalence of PI cattle was 0.3% at arrival, 2.6% in chronically ill cattle, and 2.5% in dead cattle. Risk of initial treatment for respiratory tract disease was 43% greater in cattle exposed to a PI animal, compared with those not exposed to a PI animal. Overall, 15.9% of initial respiratory tract disease events were attributable to exposure to a PI animal.

Conclusions and Clinical Relevance—Relatively few PI cattle arrive at feedlots. However, those cattle are more likely to require treatment for respiratory tract disease and either become chronically ill or die than cattle that are not PI. In addition, they are associated with an increase in the incidence of respiratory tract disease of in-contact cattle. (J Am Vet Med Assoc 2005;226:595–601)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate viral and bacterial respiratory pathogens and Mycoplasma spp isolated from lung tissues of cattle with acute interstitial pneumonia (AIP) and cattle that had died as a result of other causes.

Sample Population—186 samples of lung tissues collected from cattle housed in 14 feedlots in the western United States.

Procedure—Lung tissues were collected during routine postmortem examination and submitted for histologic, microbiologic, and toxicologic examinations. Histologic diagnoses were categorized for AIP, bronchopneumonia (BP), control samples (no evidence of disease), and other disorders.

Results—Cattle affected with AIP had been in feedlots for a mean of 127.2 days before death, which was longer than cattle with BP and control cattle. Detection of a viral respiratory pathogen (eg, bovine respiratory syncytial virus [BRSV], bovine viral diarrhea virus, bovine herpesvirus 1, or parainfluenza virus 3) was not associated with histologic category of lung tissues. Bovine respiratory syncytial virus was detected in 8.3% of AIP samples and 24.0% of control samples. Histologic category was associated with isolation of an aerobic bacterial agent and Mycoplasma spp. Cattle with BP were at greatest risk for isolation of an aerobic bacterial agent and Mycoplasma spp.

Conclusion and Clinical Relevance—Analysis of these results suggests that AIP in feedlot cattle is not a consequence of infection with BRSV. The increased risk of isolation of an aerobic bacterial agent from cattle with AIP, compared with control cattle, may indicate a causal role or an opportunistic infection that follows development of AIP. (Am J Vet Res 2001; 62:1519–1524)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate administration of chlortetracycline in feed of cattle as a method to select for tetracycline resistance among enteric bacteria in feedlot settings.

Animals—20 steers.

Procedures—Steers were randomly assigned to an exposed cohort (n = 10) or an unexposed cohort (control cohort; 10). Chlortetracycline (22 mg/kg) in cottonseed meal was administered to the exposed cohort on days 0 through 4, 6 through 10, and 12 through 16. The control cohort was administered only cottonseed meal. Fecal samples were collected from 16 steers on days −7, 0, 2, 6, 8, 12, 14, 19, 22, 26, and 33, and Escherichia coli and Enterococcus spp were isolated. Minimum inhibitory concentration (MIC) of selected antimicrobials was estimated.

Results—Overall, 56.0% and 31.4% of E coli and Enterococcus isolates, respectively, were resistant to tetracycline. Exposure to chlortetracycline was associated with a significant temporary increase in log2 MIC for both genera but returned to preexposure values by day 33. Averaged across time, the proportion of tetracycline-resistant E coli and Enterococcus isolates was significantly greater in exposed than in unexposed steers. Although all ceftiofur-resistant E coli isolates were coresistant to tetracycline, exposure to chlortetracycline led to a significant decrease in the proportion of E coli resistant to ceftiofur during exposure.

Conclusions and Clinical Relevance—Exposure to chlortetracycline was associated with a temporary increase in the likelihood of recovering resistant bacteria. Exposure to chlortetracycline decreased the likelihood of recovering ceftiofur-resistant E coli isolates, even though isolates were coresistant to tetracycline. These findings warrant further investigation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of administration of ceftiofur crystalline-free acid (CCFA) on antimicrobial susceptibility of Escherichia coli in feedlot cattle.

Animals—61 feedlot steers.

Procedures—A cohort study was conducted. Steers were housed in pens (5 pens with 10 steers and 1 pen with 11 steers). Five steers in each pen were administered CCFA, and 5 served as control steers (1 pen had 6 control steers). The CCFA administration included a single-dose regimen (6.6 mg/kg, SC, on day 0), two-thirds–dose regimen (4.4 mg/kg, SC, on day 0), and 3-dose regimen (6.6 mg/kg, SC, on days 0, 6, and 13). Fecal samples were collected on days 0, 2, 6, 9, 13, 16, 20, and 28. Fecal samples were collected immediately before CCFA administration. Minimum inhibitory concentrations of 15 antimicrobials were determined for 3 E coli isolates/fecal sample. Escherichia coli were enumerated by use of direct-plating techniques.

Results—Resistance to 1 or more antimicrobials was detected in 986 of 1,441 (68.4%) isolates recovered. Administration of CCFA was associated with a transient increase in the population of ceftiofur-resistant isolates. Susceptibility returned to day 0 values (ie, samples collected immediately before CCFA administration) approximately 2 weeks after completion of CCFA administration. Agreement between ceftiofur resistance and coresistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline was almost perfect (κ 0.97). We did not detect variation in susceptibility of E coli recovered from commingled control steers.

Conclusions and Clinical Relevance—Administration of CCFA provided selection pressure that favored transient expansion of multiple-resistant variants.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effect of feeding aspirin and supplemental vitamin E on growth performance, lung lesions, plasma concentrations of 3-methylindole (3MI), and 3-methyleneindolenine (3MEIN)-adduct concentrations in blood and pulmonary tissues of feedlot cattle.

Animals—256 crossbred steers; 64 cattle were used in experiment 1 and 192 cattle were used in experiment 2.

Procedures—A 2 × 2 factorial design was used for each experiment. Treatment factors were aspirin (0 or 3 g daily) and vitamin E (200 or 1,500 IU daily). Steers were housed in pens (8 steers/pen). Steers were slaughtered on days 59 and 138 for experiments 1 and 2, respectively. Lungs were grossly evaluated. Plasma 3MI concentration was determined, and 3MEIN-adduct concentrations were measured in blood and pulmonary tissues.

Results—Treatment was not associated with improvement or adverse effects on weight gain, drymatter intake, or feed efficiency in experiment 2. In experiment 1, 36 of 63 (57.1%) steers had lung lesions. Lesions were not associated with treatment or concentrations of 3MI and 3MEIN-adduct. Plasma 3MI concentration and concentrations of 3MEINadduct in blood and pulmonary tissues were 3.11 µg/mL, 0.51 U/µg of protein, and 0.49 U/µg of protein, respectively. Aspirin was associated with increased blood concentrations of 3MEIN-adduct for diets that did not contain supplemental vitamin E.

Conclusions and Clinical Relevance—Differences in performance of feedlot steers were not associated with treatment diet. It is possible that concurrent exposure of feedlot cattle to other factors typically associated with development of respiratory tract disease would affect these findings. (Am J Vet Res 2002:63:1641–1647)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine associations between in vitro minimum inhibitory concentrations (MICs) of tilmicosin against Mannheimia haemolytica and Pasteurella multocida and in vivo tilmicosin treatment outcome among calves with clinical signs of bovine respiratory disease (BRD).

Design—Observational, retrospective, cohort study.

Animals—976 feeder calves with clinical signs of BRD enrolled in 16 randomized clinical trials.

Procedures—Records of clinical trials from October 26, 1996, to November 15, 2004, were searched to identify calves with BRD from which a single isolate of M haemolytica or P multocida was identified via culture of deep nasal swab samples prior to treatment with tilmicosin (10 mg/kg [4.5 mg/lb], SC) and for which MICs of tilmicosin against the isolate were determined. The MICs of tilmicosin against recovered isolates and response to tilmicosin treatment were evaluated.

Results—Tilmicosin resistance among M haemolytica and P multocida isolates was uncommon (6/745 [0.8%] and 16/231 [6.9%], respectively). Treatment outcome, defined as success or failure after tilmicosin treatment, did not vary with the MIC of tilmicosin against recovered isolates. The proportion of treatment failures attributed to M haemolytica isolates categorized as resistant (MIC of tilmicosin, ≥ 32 μg/mL) or not susceptible (MIC of tilmicosin, ≥ 16 μg/mL), was 0.2% and 0.5%, respectively.

Conclusions and Clinical Relevance—Recovery of tilmicosin-resistant M haemolytica or P multocida isolates was rare, and no association was detected between MIC of tilmicosin and treatment response.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To investigate the effects of dietary supplementation with the β-adrenoceptor agonists ractopamine hydrochloride and zilpaterol hydrochloride on ECG and clinicopathologic variables of finishing beef steers.

DESIGN Randomized controlled trial.

ANIMALS 30 Angus steers.

PROCEDURES Steers were grouped by body weight and randomly assigned to receive 1 of 3 diets for 23 days: a diet containing no additive (control diet) or a diet containing ractopamine hydrochloride (300 mg/steer/d) or zilpaterol hydrochloride (8.3 mg/kg [3.8 mg/lb] of feed on a dry-matter basis), beginning on day 0. Steers were instrumented with an ambulatory ECG monitor on days −2, 6, 13, and 23, and continuous recordings were obtained for 72, 24, 24, and 96 hours, respectively. At the time of instrumentation, blood samples were obtained for CBC and serum biochemical and blood lactate analysis. Electrocardiographic recordings were evaluated for mean heart rate and arrhythmia rates.

RESULTS Steers fed zilpaterol or ractopamine had greater mean heart rates than those fed the control diet. Mean heart rates were within reference limits for all steers, with the exception of those in the ractopamine group on day 14, in which mean heart rate was high. No differences in arrhythmia rates were identified among the groups, nor were any differences identified when arrhythmias were classified as single, paired, or multiple (> 2) beats.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that dietary supplementation of cattle with ractopamine or zilpaterol at FDA-approved doses had no effect on arrhythmia rates but caused an increase in heart rate that remained within reference limits.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare concentrations of 3-methyleneindolenine (3MEIN) in lung tissues obtained from feedlot cattle that died as a result of acute interstitial pneumonia (AIP) and cattle that died as a result of other causes and to compare blood concentrations of 3MEIN in healthy feedlot cattle and feedlot cattle with AIP.

Study Population—Blood samples and lung tissues collected from 186 cattle housed in 14 feedlots in the western United States.

Procedure—Samples of lung tissues were collected during routine postmortem examination and submitted for histologic, microbiologic, and toxicologic examination. Blood samples were collected from cattle with clinical manifestations of AIP and healthy penmates. Histologic diagnoses were categorized as AIP, bronchopneumonia (BP), control samples, and other disorders. Concentrations of 3MEIN were determined in lung tissues and blood samples, using an ELISA.

Results—Concentrations of 3MEIN in lung tissues were significantly greater in AIP and BP samples, compared with control samples. Absorbance per microgram of protein did not differ between BP and AIP samples. Blood concentrations of 3MEIN were significantly greater in cattle with AIP, compared with healthy cattle or cattle with BP. Odds of an animal with AIP being a heifer was 3.1 times greater than the odds of that animal being a steer.

Conclusion and Clinical Relevance—Increased pulmonary production of 3MEIN may be an important etiologic factor in feedlot-associated AIP. (Am J Vet Res 2001;62:1525–1530)

Full access
in American Journal of Veterinary Research