Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: George Lust x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the genetic influence on expression of traits associated with canine hip dysplasia.

Animals—193 dogs from an experimental canine pedigree.

Procedure—An experimental canine pedigree was developed for linkage analysis of hip dysplasia by mating dysplastic Labrador Retrievers with nondysplastic Greyhounds. A statistical model was designed to test the effects of Labrador Retriever and Greyhound alleles on age at detection of femoral capital epiphyseal ossification, 8-month distraction index, and 8-month dorsolateral subluxation score.

Results—The additive effect was significant for age at detection of femoral capital epiphyseal ossification. Restricted maximum likelihood estimates (± SD) for this trait were 6.4 ± 1.95, 10.2 ± 2.0, 10.8 ± 3.1, 11.4 ± 2.1, and 13.6 ± 4.6 days of age for Greyhounds, Greyhound backcross dogs, F1 dogs, Labrador Retriever backcross dogs, and Labrador Retrievers, respectively. The additive effect was also significant for the distraction index. Estimates for this trait were 0.21 ± 0.07, 0.29 ± 0.15, 0.44 ± 0.12, 0.52 ± 0.18, and 0.6 ± 0.17 for the same groups, respectively. For the dorsolateral subluxation score, additive and dominance effects were significant. Estimates for this trait were 73.5 ± 4.1, 71.3 ± 6.5, 69.1 ± 6.0, 50.6 ± 12.9, and 48.4 ± 7.7%, respectively, for the same groups.

Conclusions—In this canine pedigree, traits associated with canine hip dysplasia are heritable. Phenotypic differences exist among founder dogs of each breed and their crosses. This pedigree should be useful for identification of quantitative trait loci underlying the dysplastic phenotype. (Am J Vet Res 2002;63: 1029–1035)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To estimate heritabilities and genetic correlations among 4 traits of hip joints (distraction index [DI], dorsolateral subluxation [DLS] score, Norberg angle [NA], and extended–hip joint radiograph [EHR] score) and to derive the breeding values for these traits in dogs.

Animals—2,716 dogs of 17 breeds (1,551 dogs in which at least 1 hip joint trait was measured).

Procedures—The NA was measured, and an EHR score was assigned. Hip joint radiographs were obtained from some dogs to allow calculation of the DI and DLS score. Heritabilities, genetic correlations, and breeding values among the DI, DLS score, NA, and EHR score were calculated by use of a set of multiple-trait, derivative-free, restricted maximum likelihood computer programs.

Results—Among 2,716 dogs, 1,411 (52%) had an estimated inbreeding coefficient of 0%; the remaining dogs had a mean inbreeding coefficient of 6.21%. Estimated heritabilities were 0.61, 0.54, 0.73, and 0.76 for the DI, DLS score, NA, and EHR score, respectively. The EHR score was highly genetically correlated with the NA (r = −0.89) and was moderately genetically correlated with the DI (r = 0.69) and DLS score (r = −0.70). The NA was moderately genetically correlated with the DI (r = −0.69) and DLS score (r = 0.58). Genetic correlation between the DI and DLS score was high (r = −0.91).

Conclusions and Clinical Relevance—Establishment of a selection index that makes use of breeding values jointly estimated from the DI, DLS score, NA, and EHR score should enhance breeding programs to reduce the incidence of hip dysplasia in dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify the quantitative trait loci (QTL) that contribute to hip dysplasia in dogs.

Animals—192 Labrador Retrievers.

Procedures—Hip dysplasia was measured by use of the Norberg angle (NA), dorsolateral subluxation (DLS) score, and distraction index (DI). Genome-wide screening was conducted by use of 276 unique microsatellites. Linkage analysis was performed with a variance-based linear model. Logarithm of the odds (LOD) scores were reported when values were > 2.0.

ResultsCanis familiaris autosomes (CFAs) 01, 02, 10, 20, 22, and 32 harbored significant QTL at LOD scores > 2.0. Among the 6 QTL, the QTL on CFA02 had not been reported to harbor QTL for hip dysplasia. The highest LOD score of 3.32 on CFA20 contributed to the second principal component of the DLS score and NA of the right hip joint. The QTL that was mapped on CFA01 (LOD score of 3.13 at 55 centimorgans) was located on the same chromosome reported to harbor a QTL for hip dysplasia in Portuguese Water Dogs and German Shepherd Dogs. In this study, CFAs 10, 20, 22, and 32 harbored QTL for hip dysplasia that have been identified in a Labrador Retriever–Greyhound pedigree and in German Shepherd Dogs.

Conclusions and Clinical Relevance—Multiple QTL were clearly involved with hip dysplasia. Identification of these QTL will enable fine-resolution mapping and subsequent assessment of candidate genes within the refined intervals to enable researchers to develop genetic screening tests and preventative and novel therapeutic regimens.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of 25% diet restriction on life span of dogs and on markers of aging.

Design—Paired feeding study.

Animals—48 Labrador Retrievers.

Procedures—Dogs were paired, and 1 dog in each pair was fed 25% less food than its pair-mate from 8 weeks of age until death. Serum biochemical analyses were performed, body condition was scored, and body composition was measured annually until 12 years of age. Age at onset of chronic disease and median (age when 50% of the dogs were deceased) and maximum (age when 90% of the dogs were deceased) life spans were evaluated.

Results—Compared with control dogs, food-restricted dogs weighed less and had lower body fat content and lower serum triglycerides, triiodothyronine, insulin, and glucose concentrations. Median life span was significantly longer for dogs in which food was restricted. The onset of clinical signs of chronic disease generally was delayed for food-restricted dogs.

Conclusions and Clinical Relevance—Results suggest that 25% restriction in food intake increased median life span and delayed the onset of signs of chronic disease in these dogs. (J Am Vet Med Assoc 2002;220:1315–1320)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine whether a mutation in the fibrillin 2 gene (FBN2) is associated with canine hip dysplasia (CHD) and osteoarthritis in dogs.

Animals—-1,551 dogs.

Procedures—Hip conformation was measured radiographically. The FBN2 was sequenced from genomic DNA of 21 Labrador Retrievers and 2 Greyhounds, and a haplotype in intron 30 of FBN2 was sequenced in 90 additional Labrador Retrievers and 143 dogs of 6 other breeds. Steady-state values of FBN2 mRNA and control genes were measured in hip joint tissues of fourteen 8-month-old Labrador Retriever–Greyhound crossbreeds.

Results—The Labrador Retrievers homozygous for a 10-bp deletion haplotype in intron 30 of FBN2 had significantly worse CHD as measured via higher distraction index and extended-hip joint radiograph score and a lower Norberg angle and dorsolateral subluxation score. Among 143 dogs of 6 other breeds, those homozygous for the same deletion haplotype also had significantly worse radiographic CHD. Among the 14 crossbred dogs, as the dorsolateral subluxation score decreased, the capsular FBN2 mRNA increased significantly. Those dogs with incipient hip joint osteoarthritis had significantly increased capsular FBN2 mRNA, compared with those dogs without osteoarthritis. Dogs homozygous for the FBN2 deletion haplotype had significantly less FBN2 mRNA in their femoral head articular cartilage.

Conclusions and Clinical Relevance—The FBN2 deletion haplotype was associated with CHD. Capsular gene expression of FBN2 was confounded by incipient secondary osteoarthritis in dysplastic hip joints. Genes influencing complex traits in dogs can be identified by genome-wide screening, fine mapping, and candidate gene screening.

Full access
in American Journal of Veterinary Research