Search Results
You are looking at 11 - 20 of 30 items for
- Author or Editor: Eugene P. Steffey x
- Refine by Access: All Content x
Abstract
Objective—To quantitate dose- and time-related anesthetic-sparing effects of xylazine hydrochloride (XYL) during isoflurane-induced anesthesia in horses and to characterize selected physiologic responses of anesthetized horses to administration of XYL.
Animals—6 healthy adult horses.
Procedure—Horses were anesthetized 2 times to determine the minimum alveolar concentration (MAC) of isoflurane in O2 and to characterize the anestheticsparing effect (MAC reduction) after IV administration of XYL (0.5 and 1 mg/kg of body weight, random order). Selected measures of cardiopulmonary function, blood glucose concentrations, and urinary output also were measured during the anesthetic studies.
Results—Isoflurane MAC (mean ± SEM) was reduced by 24.8 ± 0.5 and 34.2 ± 1.9% at 42 ± 7 and 67 ± 10 minutes, respectively, after administration of XYL at 0.5 and 1 mg/kg. Amount of MAC reduction by XYL was dose- and time-dependent. Overall, cardiovascular and respiratory values varied little among treatments. Administration of XYL increased blood glucose concentration; the magnitude of change was dose- and time-dependent. Urine volume increased but not significantly.
Conclusions and Clinical Relevance—Administration of XYL reduced the anesthetic requirement for isoflurane in horses. The magnitude of the decrease is dose- and time-dependent. Administration of XYL increases blood glucose concentration in anesthetized horses in a dose-related manner. (Am J Vet Res 2000;61:1225–1231)
Abstract
Objective—To quantitate effects of dose of sevoflurane and mode of ventilation on cardiovascular and respiratory function in horses and identify changes in serum biochemical values associated with sevoflurane anesthesia.
Animals—6 healthy adult horses.
Procedure—Horses were anesthetized twice: first, to determine the minimum alveolar concentration (MAC) of sevoflurane and second, to characterize cardiopulmonary and serum biochemical responses of horses to 1.0, 1.5, and 1.75 MAC multiples of sevoflurane during controlled and spontaneous ventilation.
Results—Mean (± SEM) MAC of sevoflurane was 2.84 ± 0.16%. Cardiovascular performance during anesthesia decreased as sevoflurane dose increased; the magnitude of cardiovascular depression was more severe during mechanical ventilation, compared with spontaneous ventilation. Serum inorganic fluoride concentration increased to a peak of 50.8 ± 7.1 µmol/L at the end of anesthesia. Serum creatinine concentration and sorbitol dehydrogenase activity reached their greatest values (2.0 ± 0.8 mg/dL and 10.2 ± 1.8 U/L, respectively) at 1 hour after anesthesia and then returned to baseline by 1 day after anesthesia. Serum creatine kinase, aspartate aminotransferase, and alkaline phosphatase activities reached peak values by the first (ie, creatine kinase) or second (ie, aspartate aminotransferase and alkaline phosphatase) day after anesthesia.
Conclusions and Clinical Relevance—Sevoflurane causes dose-related cardiopulmonary depression, and mode of ventilation further impacts the magnitude of this depression. Except for serum inorganic fluoride concentration, quantitative alterations in serum biochemical indices of liver- and muscle-cell disruption and kidney function were considered clinically unremarkable and similar to results from comparable studies of other inhalation anesthetics. (Am J Vet Res 2005;66:606–614)
Abstract
Objective—To compare anesthesia-related events associated with IV administration of 2 novel micellar microemulsion preparations (1% and 5%) and a commercially available formulation (1%) of propofol in horses.
Animals—9 healthy horses.
Procedures—On 3 occasions, each horse was anesthetized with 1 of the 3 propofol formulations (1% or 5% microemulsion or 1% commercial preparation). All horses received xylazine (1 mg/kg, IV), and anesthesia was induced with propofol (2 mg/kg, IV). Induction and recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and at intervals following anesthesia for quantification of clinicopathologic variables.
Results—Compared with the commercial formulation, the quality of anesthesia induction in horses was slightly better with the micellar microemulsion formulas. In contrast, recovery characteristics were qualitatively and quantitatively indistinguishable among treatment groups (eg, time to stand after anesthesia was 34.3 ± 7.3 minutes, 34.1 ± 8.8 minutes, and 39.0 ± 7.6 minutes in horses treated with the commercial formulation, 1% microemulsion, and 5% microemulsion, respectively). During recovery from anesthesia, all horses stood on the first attempt and walked within 5 minutes of standing. No clinically relevant changes in hematologic and serum biochemical analytes were detected during a 3-day period following anesthesia.
Conclusions and Clinical Relevance—Results suggest that the micellar microemulsion preparation of propofol (1% or 5%) has similar anesthetic effects in horses, compared with the commercially available lipid propofol formulation. Additionally, the micellar microemulsion preparation is anticipated to have comparatively low production costs and can be manufactured in various concentrations.
Abstract
Objective—To determine whether high intracranial pressure (ICP) during spontaneous ventilation (SV) in anesthetized horses coincides with an increase in intracranial elastance (ie, change in ICP per unit change of intracranial volume).
Animals—6 adult horses.
Procedure—Anesthesia was induced and maintained in each horse for 5 hours with isoflurane at a constant dose equal to 1.2 times the minimum alveolar concentration. Direct ICP measurements were obtained by use of a strain gauge transducer inserted in the subarachnoid space, and arterial blood pressure was measured from a carotid artery. Physiologic responses were recorded after 15 minutes of normocapnic controlled ventilation (CV) and then after 10 minutes of SV. Aliquots (3 mL) of CSF were removed from each horse during SV until ICP returned to CV values. Slopes of pressure-volume curves yielded intracranial elastance.
Results—Intracranial elastance ranged from 0.2 to 3.7 mm Hg/mL after removal of the first aliquot of CSF. Slopes of pressure-volume curves were largest following removal of the initial CSF aliquot, but shallow portions of curves were detected at relatively high ICPs (25 to 35 mm Hg). A second-order relationship between SV ICP and initial intracranial elastance was found.
Conclusions and Clinical Relevance—In horses anesthetized with isoflurane, small changes in intracranial volume can cause large changes in ICP. Increased intracranial elastance could further exacerbate preexisting intracranial hypertension. However, removal of small volumes of CSF may cause rapid compensatory replacement from other intracranial compartments, which suggests steady-state maintenance of an increase in intracranial volume during isoflurane anesthesia in horses. (Am J Vet Res 2004;65:1042–1046)
Abstract
Objective—To measure the effects of isoflurane end-tidal concentration and mode of ventilation (spontaneous vs controlled) on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in horses.
Animals—6 adult horses of various breeds.
Procedure—Anesthesia was induced and maintained with isoflurane in O2 in 6 healthy, unmedicated, adult horses. Using a subarachnoid strain gauge transducer, ICP was measured. Blood gas tensions and carotid artery pressures also were measured. Four isoflurane doses were studied, corresponding to the following multiples of the minimum alveolar concentration (MAC): 1.0 MAC, 1.2 MAC, 1.4 MAC, and 1.6 MAC. Data were collected during controlled ventilation and spontaneous ventilation at each dose.
Results—Increasing isoflurane end-tidal concentration induced significant dose-dependent decreases in mean arterial pressure (MAP) and CPP but no change in ICP. Hypercapnic spontaneous ventilation caused significant increases in MAP and ICP, compared with normocapnic controlled ventilation; no change in CPP was observed.
Conclusion and Clinical Relevance—Hypercapnia likely increases cerebral blood flow (CBF) by maintaining CPP in the face of presumed cerebral vasodilation in healthy anesthetized horses. The effect of isoflurane dose on CBF, however, remains unresolved because it depends on the opposinginfluences of a decrease in CCP and cerebral vasodilation. (Am J Vet Res 2003;64:21–25)
Abstract
Objective—To determine pharmacokinetics and selected cardiopulmonary effects of fentanyl in isoflurane-anesthetized rhesus monkeys.
Animals—6 adult male rhesus monkeys.
Procedure—Fentanyl (8 mg/kg of body weight, IV) was administered to 6 monkeys anesthetized with isoflurane. End-tidal isoflurane concentration and esophageal temperature were kept constant, and ventilation was mechanically assisted. Heart rate, rhythm, aortic blood pressure, and blood pH, gas, and fentanyl concentrations were determined before and for 8 hours after administration of fentanyl. Pharmacokinetics of fentanyl were derived by use of noncompartmental methods based on statistical moment theory.
Results—Heart rate and mean arterial pressure decreased transiently following fentanyl administration. Maximal decreases were observed 5 to 15 minutes after administration. Arterial pH, PaCO2, and PaO2 ranged from 7.46 ± 0.04 to 7.51 ± 0.05 units, 29.2 ± 3 to 34.6 ± 4.4 mm Hg, and 412.6 ± 105.3 to 482.9 ± 71.2 mm Hg, respectively. The clearance, volume of distribution area, volume of distribution steady state, mean residence time, area under the curve, elimination rate constant, and half-life were 32.5 ± 2.48 ml/kg/min, 9.04 ± 1.91 L/kg, 7.0 ± 1.2 L/kg, 218.5 ± 35.5 min, 0.247 ± 0.019 mg/ml/min, 0.004 ± 0.001/min, and 192.0 ± 33.5 min, respectively.
Conclusions and Clinical Relevance—Transient but potentially clinically important decreases in heart rate and mean arterial pressure were observed following fentanyl administration. Distribution and clearance data were similar to those reported for dogs and humans. (Am J Vet Res 2000;61:931–934)
Abstract
Objective—To quantitate the dose- and time-related effects of IV administration of xylazine and detomidine on urine characteristics in horses deprived of feed and water.
Animals—6 horses.
Procedure—Feed and water were withheld for 24 hours followed by IV administration of saline (0.9% NaCl) solution, xylazine (0.5 or 1.0 mg/kg), or detomidine (0.03 mg/kg). Horses were treated 4 times, each time with a different protocol. Following treatment, urine and blood samples were obtained at 15, 30, 60, 120, and 180 minutes. Blood samples were analyzed for PCV and serum concentrations of total plasma solids, sodium, and potassium. Urine samples were analyzed for pH and concentrations of glucose, proteins, sodium, and potassium.
Results—Baseline (before treatment) urine flow was 0.30 ± 0.03 mL/kg/h and did not significantly change after treatment with saline solution and low-dose xylazine but transiently increased by 1 hour after treatment with high-dose xylazine or detomidine. Total urine output at 2 hours following treatment was 312 ± 101 mL versus 4,845 ± 272 mL for saline solution and detomidine, respectively. Absolute values of urine concentrations of sodium and potassium also variably increased following xylazine and detomidine administration.
Conclusions and Clinical Relevance—Xylazine and detomidine administration in horses deprived of feed and water causes transient increases in urine volume and loss of sodium and potassium. Increase in urine flow is directly related to dose and type of α2-adrenergic receptor agonist. Dehydration in horses may be exacerbated by concurrent administration of α2-adrenergic receptor agonists. (Am J Vet Res 2004;65:1342–1346)
Abstract
Objective—To test the hypothesis that isofluraneanesthetized horses during controlled ventilation and spontaneous ventilation exhibit temporal changes in cerebral hemodynamics, as measured by intracranial pressure and cerebral perfusion pressure, that reflect temporal changes in systemic arterial pressure.
Animals—6 healthy adult horses.
Procedure—Horses were anesthetized in left lateral recumbency with 1.57% isoflurane in O2 for 5 hours in 2 experiments by use of either controlled ventilation (with normocapnia) or spontaneous ventilation (with hypercapnia) in a randomized crossover design. Intracranial pressure was measured with a subarachnoid strain-gauge transducer. Carotid artery pressure, central venous pressure, airway pressures, blood gases, and minute ventilation also were measured.
Results—Intracranial pressure during controlled ventilation significantly increased during constant dose isoflurane anesthesia and thus contributed to decreasing cerebral perfusion pressure. Intracranial pressure was initially higher during spontaneous ventilation than during controlled ventilation, but this difference disappeared over time; no significant differences in cerebral perfusion pressures were observed between horses that had spontaneous or controlled ventilation.
Conclusions and Clinical Relevance—Cerebral hemodynamics and their association with ventilation mode are altered over time in isoflurane-anesthetized horses and could contribute to decreased cerebral perfusion during prolonged anesthesia. (Am J Vet Res 2003;64:1444–1448)
Abstract
Objective—To compare cardiovascular effects of sevoflurane alone and sevoflurane plus an IV infusion of lidocaine in horses.
Animals—8 adult horses.
Procedures—Each horse was anesthetized twice via IV administration of xylazine, diazepam, and ketamine. During 1 anesthetic episode, anesthesia was maintained by administration of sevoflurane in oxygen at 1.0 and 1.5 times the minimum alveolar concentration (MAC). During the other episode, anesthesia was maintained at the same MAC multiples via a reduced concentration of sevoflurane plus an IV infusion of lidocaine. Heart rate, arterial blood pressures, blood gas analyses, and cardiac output were measured during mechanical (controlled) ventilation at both 1.0 and 1.5 MAC for each anesthetic protocol and during spontaneous ventilation at 1 of the 2 MAC multiples.
Results—Cardiorespiratory variables did not differ significantly between anesthetic protocols. Blood pressures were highest at 1.0 MAC during spontaneous ventilation and lowest at 1.5 MAC during controlled ventilation for either anesthetic protocol. Cardiac output was significantly higher during 1.0 MAC than during 1.5 MAC for sevoflurane plus lidocaine but was not affected by anesthetic protocol or mode of ventilation. Clinically important hypotension was detected at 1.5 MAC for both anesthetic protocols.
Conclusions and Clinical Relevance—Lidocaine infusion did not alter cardiorespiratory variables during anesthesia in horses, provided anesthetic depth was maintained constant. The IV administration of lidocaine to anesthetized nonstimulated horses should be used for reasons other than to improve cardiovascular performance. Severe hypotension can be expected in nonstimulated horses at 1.5 MAC sevoflurane, regardless of whether lidocaine is administered.