Introduction

The temporomandibular joints (TMJ) are bilateral, synovial joints, lined by fibrocartilage, that facilitate a broad range of essential functions supporting life, such as mastication, airway patency, and social interactions.1–3 The kinematics of the TMJ in the dog is a hinge-like motion. Minimal translation is also present in approximately 50% of individuals. In the cat, the TMJ motion is more restrictive.1

Fractures of the TMJ may occur at the condylar process and the mandibular head and/or at the mandibular fossa of the squamous part of the temporal bone.4–7 One study4 demonstrated that within the realm of TMJ disorders in dogs and cats, TMJ fractures were the second most common disorder in the dog and the first most common TMJ disorder in the cat. In the dog, the frequency of fractures of the mandibular fossa of the temporal bone or condylar process of the mandible or both bones is reported to be similar.4 However, in the cat, the condylar process of the mandible is reported to be the most fractured bone in the TMJ, with substantially lesser occurrence for the mandibular fossa of the temporal bone.4,6,8 Furthermore, intra-articular fractures tend to occur in most TMJ fractures of cats and to a lesser degree in dogs.6,7 It is recognized that the condylar process is a mechanically weak point of the mandible and is at high risk of fracture during trauma.9,10 Importantly, a recent study7 demonstrated that in immature dogs, rostral mandibular trauma (ie, symphyseal separation, rostral mandibular fractures) is significantly associated with articular surface fractures of the TMJ. It is speculated that trauma occurring with the mouth open facilitates the transmission of external force to the condylar process and the TMJ in general.10 However, when the mouth is closed, teeth in occlusion promote a defense against transmitting the trauma forces to the TMJ.10 Regardless, in fractures of the TMJ, the soft tissues associated with the joint and its proximity, such as the muscles of mastication surrounding the TMJ as well as the lateral
Management of TMJ fractures is complex and requires a comprehensive observation that includes the patient’s age (ie, stage of growth), dentition status, the degree of displacement, involvement of the articular surface, concurrent maxillofacial fractures, and occlusion. Importantly, imaging modalities and expertise available are crucial for formulating therapeutic plans and execution. The management of TMJ fractures can be roughly divided into “closed treatment” (ie, conservative or nonsurgical) and “open treatment” (ie, surgical). However, variations in the therapeutic approaches and combination therapy may also be selected.

This review covers current medical (ie, human and veterinary) literature pertinent to the contemporary management of TMJ fractures, from imaging to surgical planning and therapeutic approaches, including surgical and conservative methods. Finally, the outcome of TMJ fractures and their management will be discussed.

Diagnostic Imaging

The utilization of advanced diagnostic imaging following patient stabilization is fundamental in the diagnosis and management of maxillofacial trauma and, in particular, TMJ disorders. It has long been recognized that CT is superior to conventional radiographs in its ability to precisely identify anatomical structures of the skull and to detect maxillofacial injuries without superimposition. In addition, CT is helpful not only in the precise diagnosis of fractures but also in describing their morphology and spatial topography. Importantly, patients presented with maxillofacial trauma are at risk of having immediate or delayed concomitant neurologic, eye, and other soft tissue injuries. A recent study demonstrated that 32% of dogs with maxillofacial trauma also had concomitant injuries. Therefore, there should be a low threshold to obtaining a comprehensive trauma workup in the form of advanced imaging, even if the initial observation reveals an isolated injury. To further clarify, conventional CT with contrast, rather than cone-beam CT (CBCT), is recommended in situations where a neurologic injury is suspected, as it is valuable in identifying the presence of intracranial traumatic injuries such as intracranial hemorrhage and cerebral edema.

The use of CBCT for diagnosing TMJ injuries is on a high trajectory in veterinary medicine. It has relatively lower costs than conventional CT and less radiation while being faster. In addition, newer mobile CBCT machines may be used intraoperatively. Current limitations of its use are the lack of soft tissue details as compared to conventional CT and the limitation in its field of view (FOV). The choice of FOV affects image resolution such that a large FOV increases pixel size and decreases the resolution.

Therefore, the FOV should be kept as small as possible for TMJ injuries while still including pertinent anatomy that may be affected by the trauma.

Supplementing CT or CBCT images with 3-D reconstruction is helpful in understanding the spatial location of the fracture, characterization of the fracture fragments, and for surgical planning. Magnetic resonance imaging is commonly utilized in people that sustained TMJ injury due to its high ability to detect soft tissue injuries such as disc displacement, retrodiscal tear, joint effusion, and hemarthrosis. While MRI has become widely available in veterinary medicine and is a gold standard for neuroimaging, its use for diagnosing TMJ injuries in dogs and cats is less common at this juncture, likely due to higher costs and length of the scan.

In conclusion, the author recommends using conventional CT for maxillofacial trauma cases with clinical evidence or suspicion of neurologic injury of the brain or spinal cord. In situations where the neurologic injury is not evident or suspected, CBCT is recommended. Regardless, advanced diagnostic imaging is needed to identify and characterize the presence and extent of the TMJ injury as well as for patient management and follow-up.

Fracture Classification

TMJ fractures were found to be the second most common TMJ disorder in dogs and the first most common disorder in cats. The distribution of TMJ fractures differs significantly between dogs and cats. In dogs, there is a similar occurrence of fractures of the mandibular fossa of the temporal bone and the condylar process of the mandible and also when both bones were fractured. However, in cats, the pattern is different in that the condylar process of the mandible is fractured most with a rare concurrent fracture of the temporal bone. Another study evaluating TMJ fractures in cats found a similar pattern and that most condylar process fractures were intra-articular. Fractures of the condylar process are also the most common TMJ fracture in people.

A descriptive classification system exists following the topographical regions of the condylar process (ie, condylar base, condylar neck, and condylar head). The author has adapted the Arbeitsgemeinschaft for Osteosynthese craniomaxillofacial classification system and modified it for the dog and the cat (Figure 1). Essentially, a condylar process fracture is a fracture that extends caudally to the mandibular notch. A mandibular head fracture is defined as a fracture that involves the mandibular head. Thus, a distinction between fractures of the mandibular head and the condylar process may not be clinically clear due to the various complexities of the fracture situation. In addition, the complexity of the fracture can identify as 1 of 3 levels: (1) no fragmentation, (2) minor fragmentation, and (3) major fragmentation. The terms “minor” and “major” refer to fractures with a pattern that preserves or compromises the mandibular head integrity. With regards to fracture displacement, the vertical apposition of the fragments can be classified as 0 = complete

Unauthenticated | Downloaded 11/01/23 05:57 AM UTC
(ie, full surface contact), 1 = partial (ie, some surface contact), and 2 = loss or no contact (ie, complete displacement). In cases with several fractures, classification is made according to the worst fracture. As mentioned earlier, mandibular head fractures are mostly intra-articular. Finally, a similar classification as for the mandibular head can be followed for the mandibular fossa.

Management Decision-Making

Management of TMJ fractures should be planned in the context of other concomitant maxillofacial fractures and the objectives of a quick return to normal function, restoration of normal occlusion (ie, pretrauma occlusion), restoring range of motion (ROM), and masticatory function. As noted in the human medical field, TMJ fracture management is not devoid of ongoing controversies. Specifically, do we need to intervene surgically (ie, open reduction with internal fixation) or manage the fracture conservatively (ie, closed treatment)? Given the diversity in TMJ fracture and patient circumstances such as age, concomitant trauma, financial situation, and availabilities of expertise, formulation of the individualized treatment plan is required.

Closed Treatment

Utilizing closed management (ie, conservative or minimally invasive) of TMJ fractures has been the mainstay of TMJ fracture management in most circumstances in veterinary medicine, and to some extent, in the human medical field. Closed treatment means not opening the joint and using other minimally invasive methods such as a muzzle or rigid or elastic maxillomandibular fixation (MMF). Elastic MMF therapy means the utilization of intermaxillary screws or orthodontic buttons and elastic orthodontic chains to allow some movement of the jaws during the healing phases. The author prefers elastic therapy over a rigid one as it presumes to reduce the chance for fibrosis or ankylosis of the joint and its surrounding muscles and is likely to facilitate more blood supply to the healing site and maintain joint homeostasis. Elastic therapy was also reported as more tolerable as compared to a rigid one in children. In situations where malocclusion is moderate to severe, initial management with rigid MMF for approximately 2 weeks followed by conversion to elastic therapy is a rational option. This should be accompanied by either using a feeding tube to bypass the oral cavity or a soft, pureed diet for 3 weeks. A detailed description of those minimally invasive methods is available elsewhere and is not within the scope of this review. Regardless of the closed treatment method, the goal is to facilitate bone healing while minimizing the chance for displacement and malocclusion.

In younger patients, the TMJ is still growing and is rich with osteogenic potential, stem cells, blood supply, and a strong inflammatory reaction following the injury. Hence, bone healing is likely to occur...
within 2 to 3 weeks (Figure 2). In fact, understanding the growth and development of the TMJ is helpful in managing those fractures in young patients. Specifically, the condylar process (and the mandible) development occurs through remodeling and response to biomechanical strains from the surrounding soft tissues contributing to the structure-function relationships. The healing blastema for the fractured condylar process emanates from the periosteum on the medial aspect of the ramus. Bone deposition occurs via endochondral ossification, primarily in the condylar process, leading to the vertical growth of the mandibular ramus. Hence, TMJ fractures at a young age or surgical interventions at the TMJ in the critical growth phases may result in malocclusion. In addition, given that the mandible is the last facial bone to reach skeletal maturity, it is more susceptible to growth-related injuries. With that knowledge in mind, in young patients that have lost the entire condylar process, spontaneous regeneration with the formation of a condylar process-like structure may occur (Figure 3). The latter, in turn, may still result in mandibular deformity and malocclusion. Owners should be counseled on this potential sequela, and potential future treatment of malocclusions should be discussed.

Treating TMJ fractures, especially with a closed approach, could benefit from rehabilitation. Specifically, the aim is to restore an effortless normal ROM and normal occlusion for the breed without the sense of tension on the muscles of mastication or pain on opening the mouth. There are obvious differences in behavior and compliance between people and dogs and cats. Hence, the ability to perform jaw exercises following TMJ fracture treatment may be limited, depending on the patient’s demeanor. Documenting the mouth opening before therapy is essential to assessing progress and

Figure 2—A unilateral, moderately displaced with minor fragmentation fracture of the left mandibular head on the condylar process with an intra-articular component in a sagittal (A), dorsal/coronal (B), and 3-D view (C) in a 3-months-old dog. The dog was managed with a closed treatment approach using a commercially available muzzle. Recheck CBCT at 3 weeks post trauma in a sagittal (D), dorsal/coronal (E), and 3-D view (F) demonstrating complete healing and remodeling of the mandibular head with a small subchondral defect at the center of the articular surface. This exemplifies that in younger patients, the TMJ fractures can heal and remodel 2 to 3 weeks.
clinical improvement. Furthermore, measuring the ROM, using the same technique and tools, at each recheck appointment is prudent for assessing progress or deterioration such as TMJ ankylosis or fibrosis (Figure 4). Pragmatically, it is difficult to assert the degree of preinjury opening. However, there are jaw opening “norms” reported by Gracis and Zini based on the vertical mandibular range of motion (vmROM) corresponding to the maximum interincisal opening. The vmROM in that report was divided based on the dog’s weight, with the mean vmROM of all dogs of 107 ± 30 mm. The mean vmROM of the cats was 62 ± 8 mm. Specific reference numbers are described in that report based on patient size.

When evaluating progress in mouth opening following TMJ trauma, identifying mouth opening of lesser than expected should prompt an investigation into the cause. It may be that the limitation is directly associated with the TMJ injury and its surrounding muscles and ligaments, or there may be secondary fibrotic changes due to a lack of appropriate movement. This, in turn, may relate to persistent pain or neurologic damage. Asymmetry of jaw opening and closing may also hinder rehabilitation efforts. Finally, it is recommended that the patient will be reimaged to assess the healing and the potential for TMJ ankylosis, albeit rare, as described earlier. To conclude, TMJ fracture is typically accompanied by substantial injuries to the muscles and joint capsule and ligaments. Hence, rehabilitation following TMJ injury should be started as soon as possible (ie, approximately 1 to 2 weeks following injury) with the aim of early return to normal function. This in turn is likely to reduce the chances of fibrosis or ankylosis of the TMJ and its supporting structures.

Open Treatment

Given the challenging anatomy and size of the TMJ bones, especially in smaller patients, open reduction and internal fixation (ORIF) are not common in veterinary medicine at this juncture. An absolute indication for open treatment includes severe and displaced fractures of the mandibular fossa (ie, the squamous part of the temporal bone) and/or the condylar process preventing closure or opening of the mouth, as well as displacement of the condylar process into the auditory system or other critical locations. Relative indications for open treatment are severely fragmentated and displaced fractures,
especially if there is a high index of suspicion of the potential for ankylosis (i.e., fracture that limits ROM or interferes with opening or closing the mouth) and doubtful follow-up opportunities.

The use of ORIF, although found to provide a better functional reconstruction of condylar process fractures than closed treatment in human patients,14,19,26 is challenging and, at times, not possible in veterinary patients due to size and anatomy limitations. Another report19 found that both ORIF and closed treatment yield acceptable results but with significant clinical differences in terms of occlusion, mouth opening, functionality, and pain in favor of open reduction. Hence, in certain types of fractures, especially in the mandibular fossa, using ORIF, although challenging, is possible with good outcomes (Figure 5). Importantly, when selecting implants to repair TMJ fractures using ORIF, titanium miniplates and screws are recommended as they offer superior biocompatibility and osteointegration over stainless-steel implants. The latter are manufactured in low-profile systems that are ideal for the oral and maxillofacial (OMF) region.39–43 Taken together, evidence from the human medical field demonstrates that the ORIF for the management of TMJ fractures has specific indications and may offer benefits such as faster return to function, better occlusion, and less pain as compared to closed reduction. However, pragmatically it is not easy and occasionally impossible to apply in dogs and cats. In certain situations, ORIF, although technically challenging, is possible and with anecdotally good results. Notably, condylectomy should be reserved for exceptional situations where the condylar process is severely displaced or fragmented, preventing the closing or opening of the mouth.

Long-term Consideration

Outcome studies, in veterinary medicine, evaluating the success rate of closed or open approaches to TMJ fracture management in dogs and cats are scarce. A recent study7 demonstrated a significant positive correlation between the severity of fragmentation or displacement of the fracture fragments and negative fracture healing outcomes. All of the TMJ fracture cases in that study were treated conservatively. Importantly, in the same study, not a...
single dog developed TMJ ankylosis despite 36% of cases exhibiting articular surface fractures. These findings agree with the relatively low (0.4%) occurrence of TMJ ankylosis reported in people following TMJ fractures. However, TMJ ankylosis was reported to be higher (11%) in cats, with no significant relationship between age and the development of ankylosis. In that study, TMJ ankylosis was mainly observed in fractures affecting the condylar process and mandibular fossa combined. Those numbers should be taken cautiously as that study only used skull radiography and clinical examination, not CT imaging. In the author’s clinical experience and using conventional CT and CBCT, the occurrence of TMJ ankylosis is lower than reported.

Fractures of the condylar process may occur in concert with soft tissue injuries of the TMJ. Specifically, intracapsular and dislocated condylar process fractures typically result in more severe soft tissue injuries such as disc displacement or disruption, hemarthrosis, and capsular injury. These, in turn, may cause long-term complications such as chronic pain or discomfort, decreased ROM, ankylosis, and osteoarthritis.

Conclusion and Expert Perspective

Management of TMJ fractures in dogs and cats should be planned in the context of the overall maxillofacial trauma that the patient sustained. Clinical studies clearly demonstrate that TMJ fractures may occur in concert with other OMF fractures. Utilizing advanced diagnostic imaging once the patient is clinically stable is fundamental to treatment planning. With the variable level of expertise in managing OMF trauma and TMJ fractures, it is important to remember the “first do no harm” phrase coined by Hippocrates. Selecting an approach that the surgeon is trained and comfortable with is fair and important. If the method is inappropriate or not ideal for the clinical situation, a referral to a specialist is prudent. As noted in this review, substantial evidence-based information was derived from the human literature on the TMJ. While the author has been investigating the TMJ for over a decade in both clinical and laboratory settings, a substantial portion of the author’s current approaches was derived from the available evidence-based information was derived from the human literature on the TMJ. The author would like to thank Dr. Chrisoula Toupidakis with the artwork.

Acknowledgments

The author declares that there were no conflicts of interest or external funding in the preparation of this manuscript. The author would like to thank Dr. Chrisoula Toupidakis with the artwork.

References

13. Arzi B, Lantz GC. Fractures and luxations involving the temporomandibular joint. In: Verstraete FJM, Lommer MJ,

