Elective gonadectomy of dogs and cats, most commonly performed as an OHE of females and castration of males, is one of the most common veterinary procedures performed in the United States. Increasingly, dog owners and members of the veterinary profession throughout the world have questioned the optimal age for performance of these surgeries or whether they should even be performed as elective surgeries. The objective for the information reported here was to provide a review of the scientific evidence, which could be used by veterinarians to counsel clients appropriately on this issue.

Traditional Age at Gonadectomy

Currently, most veterinarians in the United States recommend that elective gonadectomy be performed in dogs and cats at 6 to 9 months of age. However, there does not appear to be any scientific evidence to document that this is the optimal age. In fact, the age at which pets have traditionally been spayed and neutered has varied through the years and with geographic location. In the early 1900s, OHE was performed at 3 to 6 months of age and castration as early as 4 weeks of age. Over time, the recommended age for elective gonadectomy of small animals increased to 6 to 9 months of age. It has been hypothesized that this was the result of an increasing popularity of dogs and cats as pets as American citizens found themselves with more disposable income, a subsequent desire by those pet owners for reproduction control in their animals, and the intent of veterinarians to provide the safest possible anesthesia and surgery for these new “family members.”

Despite great advances in anesthetic and surgical techniques and multiple studies that provide evidence for the safety of anesthesia and surgery in dogs and cats of younger ages, veterinarians in the United States still cling to the recommendation to perform gonadectomy at 6 to 9 months of age, with the added stipulation that bitches and queens should be spayed before their first estrus.

In some parts of the world, elective gonadectomy is considered unethical and is strongly discouraged or disallowed by professional veterinary associations. Elective gonadectomy is illegal in at least 1 country. In 1 article published in Europe, elective gonadectomy is decried as “the tool of despots and tyrants throughout history,” and the author of that article claims that gonadectomized dogs are “canine eunuchs, condemned to live their lives in a physical and mental twilight.” That author also questions how a profession that publicly declares itself the guardian of animal welfare can, with impunity, perform elective surgery on animals for human convenience.

Cultural and personal factors, including religious affiliation, ethnic background, intended working life of the animal, urban or rural location of the household, and literacy status, also may be associated with the likelihood that an owner will request gonadectomy for a pet. Species and sex also play a role; in retrospective surveys, cats are more likely to be spayed or castrated than dogs, and bitches and queens are more likely to have undergone elective gonadectomy than stud dogs or tomcats.

Surgical and anesthetic techniques for elective gonadectomy in dogs and cats of various ages are provided in the veterinary literature. The reported incidence of postoperative complications in 1,016 dogs and 1,459 cats after elective surgery was 6.1% and 2.6%, respectively, with most of these considered minor problems, including inflammation at the incision site and gastrointestinal tract upset. Complications were more common in dogs that underwent surgery when they were > 2 years of age. In a study in which investigators evaluated complications in 142 dogs undergoing OHE performed by fourth-year veterinary students, incidence of intraoperative complications was 6.3% and incidence of postoperative complications was 14.2%. Again, most of these were minor, including self-resolving hemorrhage and inflammation at the incision site and gastrointestinal tract upset. In that study, the high incidence of postoperative complications was associated with an increase in surgery time, which was in turn positively correlated with increasing body weight of the animal. In studies in which incidence of intraoperative and postoperative complications for elective gonadectomies performed at various ages was compared, the only com-

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHE</td>
<td>Ovariohysterectomy</td>
</tr>
<tr>
<td>TCC</td>
<td>Transitional cell carcinoma</td>
</tr>
<tr>
<td>CCL</td>
<td>Cranial cruciate ligament</td>
</tr>
<tr>
<td>FLUTD</td>
<td>Feline lower urinary tract disease</td>
</tr>
<tr>
<td>BPH</td>
<td>Benign prostatic hypertrophy-hyperplasia</td>
</tr>
</tbody>
</table>
Complication associated with age at time of surgery was an increased incidence of postoperative infectious disease in dogs undergoing elective gonadectomy when they were <12 weeks old. This may have been an artifact of the source from which dogs were recruited for the study.17

Societal Benefits of Elective Gonadectomy

The primary societal benefits of elective gonadectomy in dogs and cats are fewer animals relinquished to humane organizations and the fact that a specific animal’s contribution to pet overpopulation is minimized. Multiple studies9,18-20 have revealed that sexually intact dogs and cats are more likely to be relinquished to humane organizations than are those that are gonadectomized. In only 1 study21 was it reported that there was an increased percentage of gonadectomized animals among those relinquished to humane organizations; animals that were examined for behavioral reasons, and it was considered likely that they had been gonadectomized as a possible treatment for behavioral problems, but with no subsequent improvement after surgery.

Millions of dogs and cats are euthanized at humane organizations annually in the United States, with estimates of 5.4 to 9.1 million dogs and 5.7 to 9.5 million cats euthanized in 1990.22,23 Crude estimates of annual death rates in dogs and cats are 7.9% and 8.3%, respectively.24 Statistics from humane organizations housing at least 100 animals/25 combined with these death rates, suggest that <400,000 dogs and cats should be euthanized at humane organizations annually.25 Not all animals euthanized at humane organizations are euthanized because of overpopulation26; however, the aforementioned study25 indicates that >2 million dogs and cats were euthanized at those shelters alone, and substantiates the loss of animal life and stress to workers at humane organizations associated with overpopulation of dogs and cats in the United States.

Sexually intact animals adopted from humane organizations may be returned or may reproduce, both of which would repopulate those shelters. In 1 study,8 36.4% of relinquished animals were from unwanted litters. In a survey27 of dog- and cat-owning households in the United States, 56% of 154 canine litters and 68% of 317 feline litters were unplanned. There is a lack of knowledge about reproduction among animal owners: the most common reason reported for the unplanned canine litters was that the owner did not know the bitch was in heat.28 Up to 57% of bitch owners were unaware that bitches may cycle twice each year, up to 83% of cat owners were unaware that queens are seasonally polyestrus, and up to 61% of dog and cat owners were not certain or truly believed that their pet would be better if it had a litter before OHE was performed.9,27,28

Owners that adopt animals from humane organizations routinely sign a spay-neuter contract. However, compliance with such contracts is typically <60%.8,29 Up to 90% of veterinarians support mandatory gonadectomy of dogs and cats prior to adoption.30 Few venues exist for educating veterinarians in early-age gonadectomy of dogs and cats, with most being self-taught.30,31 Enhanced training of veterinarians in early-age gonadectomy and pediatric anesthetic techniques, mandatory gonadectomy of dogs and cats prior to adoption, and increased education of dog and cat owners about small animal reproductive physiology can only be of benefit in addressing these societal issues.

Benefits and Detriments of Elective Gonadectomy for Behavioral Concerns

Sexually dimorphic behaviors are those most commonly displayed by 1 sex, with mounting and urine spraying as primary examples.32 Aggression may be a sexually dimorphic behavior. Most commonly, only those forms of aggression associated with the presence of females in estrus (aggression between females or between males housed with those females) are considered sexually dimorphic. Gonadectomy and the subsequent decrease in gonadal steroid hormones have been correlated with a decrease in sexually dimorphic behaviors.33,35,37 Likelihood that gonadectomy will impact sexually dimorphic behaviors is not correlated with duration of the problem behavior and may or may not be associated with prior sexual experience of the affected animal.33,36,38-41 Trainability of working dogs is not altered by gonadectomy and does not vary with age of the dog at the time of gonadectomy.4

Sexual behavior of male cats makes them extremely undesirable, and often unsafe, household pets.42 A decrease in sexually dimorphic behaviors after castration of male cats is an extremely powerful benefit of elective gonadectomy. Sexual behaviors of queens, bitches, and stud dogs, although still possibly undesirable, are less commonly so severe as to make these animals untenable as household pets.

Nonsexually dimorphic behaviors are not typically affected by gonadectomy. One large-scale study43 of dogs revealed a possible increase in noise phobias and decrease in separation anxiety and submissive urination associated with gonadectomy performed before the dogs were 5 months old.

An increase in reactivity toward humans with strange (unfamiliar) dogs and in aggression toward family members has been reported after OHE of bitches in several studies.44-46 The reason for this possible tendency has not been defined but may be attributable to a decrease in estrogen and oxytocin concentrations, both of which may exert antianxiety effects in some species.47 This tendency also may be a breed-specific phenomenon.

Cognitive function may be altered by gonadectomy. Comparison of the progression of cognitive dysfunction in sexually intact and castrated male dogs revealed a slowing of progression in sexually intact males.48 Sample size was small in that study, with only 6 dogs in the sexually intact male group. Androgen deprivation has been associated with increased amyloid deposition in brains of humans and rodents and with decreased synapses in brains of rodents and nonhuman primates.49 However, in a study50 in which investigators directly examined brain tissue for DNA damage, a significantly greater percentage of neurons had extensive DNA damage in sexually intact Beagles than in castrated Beagles between 9 and 10.5 years of age.
Benefits and Detriments of Elective Gonadectomy for Various Conditions

Several conditions in dogs and cats can be impact-
ed by elective gonadectomy, including neoplasia and orthopedic diseases. Knowledge of the benefits and det-
riments associated with elective gonadectomy enables
veterinarians to provide the best counsel to clients and
also to promote animal health.

Mammary gland neoplasms—Mammary gland neoplasms are the most common tumors of female
dogs, with a reported incidence of 3.4%, and they are
the third most common tumors of female cats, with a
reported incidence of 2.5%. Mammary gland neo-
plasms are the most common types of malignant tumors in
dogs. Mean percentage of mammary gland tumors in
dogs that are malignant is 50.9%. In female
cats, > 90% of mammary gland tumors are malignant.
Metastases are reported in up to 77% of dogs
with mammary gland carcinomas, with the lungs being
the site of metastasis in 30.8% of affected dogs. In
1 study, 59.7% of dogs in which a mammary gland
tumor was diagnosed were euthanized at the time of
diagnosis.

Increasing age and breed are risk factors for develop-
ment of mammary gland neoplasms, with a mean age at diagnosis of approximately 10 years in dogs and
cats. Breeds reported to be at increased risk for
developing mammary gland tumors include the Boxer,
Brittany, Cocker Spaniel, Dachshund, English Setter,
English Springer Spaniel, German Shepherd Dog, Mal-
tese, Miniature Poodle, Pointer, Toy Poodle, and York-
shire Terrier. Cat breeds reported to be at increased risk
for development of mammary gland neoplasms, with a
mean age of dogs at diagnosis is approximately 10 years, with slightly younger dogs
having prostatic adenocarcinoma with metastases to
bones. An exact cause-and-effect relationship has
not been defined, but it has been suggested that
deprivation of androgens does not act to initiate neopla-
sia; rather, androgen deprivation permits progression
of disease.

Prostatic neoplasms—The reported incidence of
prostatic tumors in dogs is 0.2% to 0.6%, and pros-
tatic neoplasms in dogs are almost always malignant
adenocarcinomas. There is neoplastic differentia-
tion in tissues of ductal or urothelial origin, which
are androgen-independent tissues. However, castra-
ted dogs are at an increased risk for development
of prostatic neoplasms, with the increase in risk rang-
ing from 2.4 to 4.3 times that of sexually intact male
dogs (Table 2). Mean age of dogs at diagnosis
is approximately 10 years, with slightly younger dogs
developing mammary gland neoplasms when they get older.66 However, per-
forming an OHE may even have a substantial sparing
effect in older dogs, with a reduced but still evident re-
duction for mammary gland neoplasms in dogs spayed
as late as 9 years of age.66

An exact cause-and-effect relationship between
sexually intact status and mammary gland neoplasia
has not been defined. Estrogen and progesterone have
direct and indirect stimulatory effects on mammary
and progesterone have
gland tissue, and receptors for both hormones have
been identified in normal and neoplastic mammary
gland tissues. In 1 report, it was suggested that
mammary gland neoplasms may be more likely to de-
velop in bitches that had overt pseudopregnancy more
than 3 times during their life, which would support the
hypothesis that there is a hormonal effect or a direct ef-
fect of malignant transformation of metabolically active
mammary gland tissue.

Other types of tumors—Testicular tumors are the
second most common tumor type in dogs, with a re-
ported incidence of 0.9%. Overall, sexually intact dogs
and cats have 7 times the risk of developing mammary
gland neoplasms when they get older, compared with
the risk for spayed dogs and cats. Compared with the
incidence in sexually intact dogs, dogs spayed before
their first estrus have a 0.5% risk, dogs spayed after 1
estrus have an 8.0% risk, and dogs spayed after 2
estrus cycles have a 26.0% risk of developing mammary
gland neoplasms when they get older.67 However, per-

Table 1—Benefits and detriments of OHE for various conditions in female cats.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incidence</th>
<th>Substantial morbidity?</th>
<th>Specific breeds at risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary gland neoplasms</td>
<td>2.5%</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>Ovarian or uterine tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyometra</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Increases with age</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Detriments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications of surgery</td>
<td>2.6%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Obesity</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FLUTD</td>
<td>0.6%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.5%</td>
<td>No</td>
<td>Yes†</td>
</tr>
</tbody>
</table>

*Japanese domestic breeds and Siamese. †Burmese.
The most common tumor of the urinary tract of dogs is TCC of the bladder.85-88 Overall incidence of TCC in dogs is reported to be, at most, 1% of all malignant tumors.89 Breeds at increased risk for development of a TCC include the Airedale Terrier, Beagle, Collie, Scottish Terrier, Shetland Sheepdog, West Highland White Terrier, and Wire Fox Terrier.107

In 1 study,107 in which investigators evaluated 683 purebred Rottweilers, there was a significant increase in the incidence of osteosarcoma in female and male dogs that had undergone gonadectomy when < 1 year of age; however, the overall incidence of osteosarcoma in this population of dogs was much higher than that in the general population, which suggested a hereditary component. Furthermore, life span of dogs did not differ (mean ± SD life span of sexually intact and castrated male dogs was 9.3 ± 2.5 years and 9.2 ± 2.5 years, respectively) or was noticeably increased (mean life span in sexually intact and spayed female dogs was 7.5 ± 2.4 years and 9.8 ± 2.4 years, respectively) in gonadectomized dogs.92 An exact cause-and-effect relationship has not been defined.

Hemangiosarcoma is the most common cardiac tumor in dogs, with a reported incidence of 0.2%.96 Breeds at increased risk for development of hemangiosarcoma include the Boxer, English Setter, German Shepherd Dog, Golden Retriever, Great Dane, Labrador Retriever, Pointer, Poodle, and Siberian Husky, with large breeds (in general) at increased risk, compared with the risk for small breeds.97 For both cardiac and splenic hemangiosarcoma, relative risk is increased for gonadectomized animals, with spayed females reportedly having 2.2 times the risk of splenic hemangiosarcoma and 5 times the risk of cardiac hemangiosarcoma, compared with the risk for sexually intact females, and castrated males having 2.4 times the risk, compared with the risk for sexually intact males.98-99 An exact cause-and-effect relationship has not been defined.

Orthopedic abnormalities—Postmenopausal women or those who have undergone OHE have explicit concerns about osteoporosis. However, there is no decrease in mineral density of bone in dogs after OHE.99-101 Timing of closure of the physes of long bones is controlled in part by gonadal hormones. In both dogs and cats, gonadectomy at any age prior to physeseal closure delays that closure and is associated with statistically significant, although not readily visible or clinically relevant, lengthening of associated long bones.94-103,106 However, no specific correlation has been found between age at gonadectomy and incidence of long-bone fractures, including physeseal fractures.105

In 1 study,107 there was an increase in the incidence of capital physeseal fractures in the femurs of castrated male cats; however, the cats with fractures were also overweight.
Hip dysplasia is a hereditary condition in dogs that affects females and males with equal frequency and can be controlled (to some extent) by environmental factors, including diet.108-111 The reported incidence of hip dysplasia is 1.7%, with an increased incidence in large- and giant-breed dogs, most particularly in the Chesapeake Bay Retriever, English Setter, German Shepherd Dog, Golden Retriever, Labrador Retriever, Samoyed, and Saint Bernard breeds.112 In 1 large study113 of 1,842 dogs, there was an increased incidence of hip dysplasia in dogs spayed or castrated prior to 5 months of age; however, it was not clear whether the diagnosis of hip dysplasia was confirmed by a veterinarian in all affected dogs.

Rupture of the CCL is more common in women than in men and may be more likely to occur during certain phases of the menstrual cycle, which suggests a hormonal effect on joint stability.114 Dog breeds reported to be at increased risk of CCL rupture include the Akita, American Staffordshire Terrier, Chesapeake Bay Retriever, German Shepherd Dog, Golden Retriever, Labrador Retriever, Mastiff, Neapolitan Mastiff, Newfoundland, Poodle, Rottweiler, and Saint Bernard.114,115 Report incidence of CCL rupture is 1.8%, and it reportedly is more prevalent in gonadectomized female and male dogs than in sexually intact dogs.114-117 An exact cause-and-effect relationship has not been defined, but heredity plays a role in the predisposition toward CCL injury, as might body weight and body condition score. To my knowledge, there have been no studies for which the results would implicate alterations in physeal closure with subsequent asynchrony of long-bone growth and abnormalities in joint formation as a cause of CCL rupture in dogs.115,118

Obesity—Obesity is the most common nutritional disorder of dogs and cats, with a reported incidence of 2.8% among the entire dog population.119 It is a multifactorial problem. Risk factors include breed, with an increased incidence of obesity in Beagles, Cairn Terriers, Cavalier King Charles Spaniels, Cocker Spaniels, Dachshunds, and Labrador Retrievers; housing; increasing age; ownership by an overweight person or a person ≥40 years old; and, possibly, sex of the dog.34,116-122

The most commonly reported risk factor for obesity is gonadectomy, with spayed or castrated dogs and cats much more commonly designated by veterinarians as being overweight or obese, compared with the weight designations for sexually intact animals.33,121-127 In 1 study,126 34% of castrated male and 38% of spayed female dogs were considered overweight or obese. It is unclear whether age at the time of gonadectomy has an effect on subsequent obesity. Studies16,102,103 in dogs failed to detect differences in food intake, body weight, or depth of back fat when comparing dogs gonadectomized at 7 or 8 weeks of age and dogs gonadectomized at 7 months of age. A retrospective study14 of 1,842 dogs revealed a decrease in the incidence of obesity in dogs gonadectomized prior to 5 months of age when compared with those gonadectomized at >5 months of age. Similarly, although cats are more likely than dogs

Table 3—Benefits and detriments of OHE for various conditions in female dogs.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Incidence</th>
<th>Substantial morbidity</th>
<th>Specific breeds at risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary gland neoplasms</td>
<td>3.4% in all dogs; greatly reduced when spayed before first estrus</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>Ovarian or uterine tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyometra</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>15.2% by 4 years of age, 25% to 24% by 10 years of age</td>
<td>Yes</td>
<td>Yes†</td>
</tr>
<tr>
<td>Detriments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications of surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggression</td>
<td>6.1% Variable</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TCC</td>
<td>< 1%</td>
<td>No</td>
<td>Yes§</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>0.2%</td>
<td>Yes</td>
<td>Yes¶</td>
</tr>
<tr>
<td>Hemangiosarcoma</td>
<td>0.2%</td>
<td>Yes</td>
<td>Yes‡</td>
</tr>
<tr>
<td>CCL rupture</td>
<td>1.8%</td>
<td>Yes</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Obesity</td>
<td>2.8%</td>
<td>No</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.5%</td>
<td>No</td>
<td>Yes††</td>
</tr>
<tr>
<td>Urinary incontinence</td>
<td>4.8%–20.0%; increased when spayed at <3 months of age</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

to become obese after gonadectomy, no correlation has been found between age at gonadectomy and final body weight or amount of body fat.

Metabolic rate decreases after gonadectomy in cats. Male cats castrated before onset of puberty may have a decreased ability to extrude the penis. Male dogs castrated at 7 weeks of age had less perineal development than did control dogs in one study. Female dogs spayed before onset of puberty may have a decreased ability to extrude the penis.

Clinical relevance of this phenomenon is not known.

Feline lower urinary tract disease is a syndrome consisting of hematuria, dysuria or pollakiuria, and possible urethral obstruction and is most commonly classified as idiopathic. The reported incidence of FLUTD is 0.6%. Despite numerous vehemently declared anecdotes of an increase in the incidence of urethral obstruction in male cats castrated when young, numerous studies have failed to detect a correlation between gonadectomy of cats at any age and a decrease in diameter of the urethra or an increase in incidence of FLUTD, with or without urethral obstruction. In 1 large study, investigators identified gonadectomy as a risk factor for development of FLUTD in both female and male cats and also identified an increased risk of development of FLUTD in overweight or obese cats. In that study, sexually intact female cats had a relatively reduced risk for development of FLUTD.

Urethral sphincter mechanism incompetence, formerly known as estrogen-responsive urinary incontinence, is a common problem of spayed female dogs. The condition is evident with equal frequency in ovariohysterectomized or ovariec tomized female dogs, with the reported incidence ranging from 4.9% to 20.0%. Studies have failed to detect a correlation between age at time of OHE and likelihood of developing incontinence. In a study of 983 female dogs, bitches were significantly less likely to develop incontinence when spayed at > 3 months of age. Other risk factors include body weight, with dogs weighing ≥ 20 kg (44 lb) at increased risk; breed, with Boxers, Dobermans, Pinschers, Giant Schnauzers, Irish Setters, Old English Sheepdogs, Rottweilers, Springer Spaniels, and Weimeraners at increased risk and Labrador Retrievers at decreased risk in European studies; and urethral length or resting position of the urinary bladder. An exact cause-and-effect relationship has not been defined, with research currently focusing on altered gonadotropin secretion after gonadectomy. Typically, urethral sphincter mechanism incompetence is easily controlled with medical treatments.

Adrenal gland disease—To the author’s knowledge, there are no reports of an increase in the incidence of adrenal gland disease associated with sexually intact status in dogs and cats. In the United States, almost all ferrets are gonadectomized when extremely young; the incidence of adrenal gland disease in ferrets is higher in the United States than in European countries where ferrets are not routinely spayed or castrated. In 1 study in Europe, a correlation was detected between age at gonadectomy and age at onset of adrenal gland disease, with ferrets gonadectomized at a younger age having clinical signs of adrenal gland disease earlier in life. Sexually intact ferrets also have adrenal gland disease. Possible causes for this include lack of down-regulation of sex steroids or an increase in circulating concentrations of gonadotropins that causes adrenal gland hyperplasia and possibly contributes to neoplastic transformation.

Pyometra—Incidence of pyometra in dogs and cats in the United States has not been reported, perhaps because of the prevalence of OHE in these species before they reach an age when they would be likely to develop pyometra. In other countries, 15.2% and 23% to 24% of bitches developed pyometra by 4 and 10 years of age, respectively. Pyometra is more common in nulliparous bitches than in bitches with a history of carrying a pregnancy successfully to term. There is a significant likelihood that cats will have clinical evidence of uterine disease when queens reach 5 years of age. Dog breeds reported to be at increased risk of developing pyometra include the Bernese Mountain Dog, Cavalier King Charles Spaniel, Chow Chow, Collie, English Cocker Spaniel, Golden Retriever, Rottweiler, and Saint Bernard. In animals with pyometra, OHE is curative, with reported mortality rates of 0% to 17% in dogs and 8% in cats.

Nonneoplastic prostatic disease—Benign prostatic hypertrophy-hyperplasia is a common disorder in sexually intact male dogs. In 1 study, investigators evaluated male dogs. Of 300 sexually intact male dogs, 231 (63.4%) had BPH; all castrated male dogs in that study had profound prostatic atrophy. Development of BPH is positively correlated with age. By 2.4 years of age, half of all sexually intact dogs will have histologic or clinical evidence of BPH, with the incidence increasing to 75% to 80% by 6 years of age and 95% to 100% by 9 years of age. In addition, BPH predisposes dogs to prostatitis. Neither BPH nor prostatitis is commonly associated with substantial morbidity, and
Endocrine disorders—The reported incidence of diabetes mellitus in dogs is 0.5%. Risk factors include breed, with Miniature Poodles, Miniature Schnauzers, Pugs, Samoyeds, and Toy Poodles at increased risk; sex, with female dogs more commonly affected than male dogs; and increasing age. In 1 study, a possible increase in the risk of developing diabetes mellitus was detected in castrated male dogs; however, it was not defined whether this could have been associated with obesity in these animals. In cats, the reported incidence of diabetes mellitus is 0.4% and risk factors include breed, with Burmese cats at increased risk; sex, with males at increased risk; and increasing age. Gonadectomized male and female cats have an increased risk, with gonadectomized cats having 8.7 times greater odds of developing diabetes mellitus than for sexually intact cats.

The incidence of hypothyroidism in dogs is 0.2% to 0.3%. A breed predisposition has been described for the Airedale Terrier, Cocker Spaniel, Dachshund, Doberman Pinscher, Golden Retriever, Irish Setter, Miniature Schnauzer, Pomeranian, and Shetland Sheepdog breeds. Those studies have revealed an increased risk of development of hypothyroidism for spayed female and castrated male dogs, compared with the risk for sexually intact dogs. A cause-and-effect relationship has not been defined. Hypothyroidism typically is easily controlled with medical treatment.

Life span—Life expectancy at birth for women in the United States is 80.4 years, whereas that for men is 75.2 years. Results for dogs vary, with females living longer than males in some studies and the reverse being found in other studies. Negative correlations have been detected between body weight and longevity and between height and longevity in dogs. Several studies have revealed an increase in longevity for gonadectomized animals when compared with that for sexually intact animals. In sockeye salmon, life span is significantly longer in fish castrated before gonadal development. Results of these studies argue against the evolutionary theory, which holds that it is not prudent for a population to carry individuals that have aged past reproductive usefulness. In dogs and cats, this may be a reflection of enhanced care of animals by owners who have made the investment of surgery or a decrease in risk-associated behaviors (such as roaming) in gonadectomized animals.

Conclusions

How does a veterinarian reconcile all of these data to make the best possible recommendation regarding optimal age at which to neuter male and female dogs and cats? The author provides the following assertions:

- Pets should be considered individually, with the understanding that for these pets, population control is a less important concern than is health of each animal. Dogs and cats should be maintained as household pets. Responsible owners should ensure that their pets are provided appropriate and regularly scheduled veterinary care.
- The behavior of most sexually intact male cats makes them undesirable or dangerous as pets. Because castration substantially reduces these sexually dimorphic behaviors, it is recommended that all male cats not intended for breeding be castrated prior to puberty and that all breeding males be castrated as soon as their use as a breeding male has ceased.
- For female cats and male and female dogs, veterinarians and owners must consider the benefits and detriments of gonadectomy for each animal (Tables 1–3). Factors to be considered include incidence of various conditions associated with gonadectomy; degree of morbidity, with substantial morbidity defined as a condition prevalent in > 1% of the population associated with > 50% of the malignancy or mortality rates, or not easily controlled by noninvasive treatments or good husbandry; breed; and intended working or breeding life of each animal.

As an example, consider a discussion between a veterinarian and the owner of an 8-week-old female Labrador Retriever that is not intended for breeding. This dog would benefit greatly from OHE before her first estrus as a means of preventing mammary gland tumors, which are extremely common and cause substantial morbidity (Table 3). Because of her breed, detriments of OHE include an increased predisposition to CCL injury, hemangiosarcoma, and obesity. However, there is a low incidence of hemangiosarcoma, and obesity can be readily controlled with good husbandry, which leaves CCL injury as the most important possible detriment. Because the incidence of CCL rupture is lower than that of mammary gland neoplasia, a veterinarian may choose to recommend OHE and educate the owner about maintenance of optimal body condition and other management techniques that will minimize potential for CCL injury. An OHE should be performed before the dog’s first estrus. To minimize the potential for development of urinary incontinence, the veterinarian may choose to wait to perform the OHE until after the dog has reached 3 months of age.

The information provided here on the risks and detriments of gonadectomy is not intended to promote or to minimize the importance of gonadectomy as a means of controlling animal populations or possible impacts on animal health or behavior of a specific animal. The veterinary profession recognizes the need for individual assessment of risk and benefit when evaluating vaccination protocols for animals. Elucidation of the genome in various species may lead to individualized diagnostic and treatment plans for each animal in the future. It behooves us as veterinarians dedicated to the provision of the best possible care for animals to educate clients and evaluate each animal carefully when making recommendations regarding gonadectomy.
References

Philadel...61.

62.

52.

58.

50.

69.

70.

65.

57.

56.

54.

49.

Cohen D, Reif JS, Brodey RS, et al. Epidemiological analysis of...

Johnston SD, Root Kustritz MV, Olson PN. Disorders of the...

Richards HG, McNeil PE, Thompson H, et al. An epidemiological analysis of...

Misdorp W, Hart AAM. Canine mammary cancer. II. Therapy...

Bell FW, Klausner JS, Hayden DW, et al. Clinical and patho...

Moulton JE, Taylor DON, Dorn CR, et al. Canine mammary tu...

Hayes HM, Milne KL, Mandel CP. Epidemiological features of...

Sorenmo KU, Goldschmidt M, Shofer F, et al. Immunohisto...

Waters DJ, Shen S, Glickman LT. Life expectancy, antagonistic...

Cotchin E. Neoplasms in small animals. Vet Rec 1951;63:67–...

