Browse
Abstract
Objective—To compare numbers of L cells in intestinal samples and blood concentrations of glucagon-like peptide (GLP)-1 between neonatal and mature alpacas.
Sample—Intestinal samples from carcasses of 4 suckling crias and 4 postweaning alpacas for immunohistochemical analysis and blood samples from 32 suckling crias and 19 healthy adult alpacas for an ELISA.
Procedures—Immunohistochemical staining was conducted in accordance with Oregon State University Veterinary Diagnostic Laboratory standard procedures with a rabbit polyclonal anti–GLP-1 primary antibody. Stained cells with staining results in ileal tissue were counted in 20 fields by 2 investigators, and the mean value was calculated. For quantification of GLP-1 concentrations, blood samples were collected into tubes containing a dipeptidyl peptidase-4 inhibitor. Plasma samples were tested in duplicate with a commercial GLP-1 ELISA validated for use in alpacas.
Results—Counts of stained cells (mean ± SD, 50 ± 18 cells) and plasma GLP-1 concentrations (median, 0.086 ng/mL; interquartile range, 0.061 to 0.144 ng/mL) were higher for suckling alpacas than for postsuckling alpacas (stained cells, 26 ± 4 cells; plasma GLP-1 concentration, median, 0.034 ng/mL; interquartile range, 0.015 to 0.048 ng/mL).
Conclusions and Clinical Relevance—Older alpacas had lower numbers of L cells in intestinal tissues and lower blood concentrations of GLP-1 than those in neonates. These findings suggested that there may be a decrease in the contribution of GLP-1 to insulin production in adult alpacas, compared with the contribution in neonates.
Abstract
Objective—To determine the effects of dexamethasone or synthetic ACTH administration on endogenous ACTH concentrations in healthy dogs.
Animals—10 healthy neutered dogs.
Procedures—Each dog received dexamethasone (0.01 mg/kg), synthetic ACTH (5 μg/kg), or saline (0.9% NaCl) solution (0.5 mL) IV at intervals of ≥ 30 days. Plasma endogenous ACTH concentrations were measured before (baseline; time 0) and 1, 8, 12, and 24 hours after drug administration; serum cortisol concentrations were measured before and 1 hour after synthetic ACTH and saline solution administration and 8 hours after dexamethasone administration.
Results—Analysis of serum cortisol concentrations confirmed effects of drug administration. Dexamethasone significantly decreased the endogenous ACTH concentration from the baseline value at both 8 and 12 hours. Synthetic ACTH administration significantly decreased the endogenous ACTH concentration from the baseline value at 8 hours. Saline solution administration had no significant effect on endogenous ACTH concentration.
Conclusions and Clinical Relevance—Dexamethasone and synthetic ACTH administered IV at doses used routinely during testing for hyperadrenocorticism caused significant but transient reductions of endogenous ACTH concentrations in healthy dogs. Thus, a 2-hour washout period following ACTH stimulation testing before collection of samples for measurement of the endogenous ACTH concentration may be insufficient. Although this effect has not been verified in dogs with hyperadrenocorticism, these data suggested that samples for measurement of endogenous ACTH concentrations should be obtained before or > 8 hours after initiation of an ACTH stimulation test or before or > 12 hours after the start of a low-dose dexamethasone suppression test.
Abstract
Objective—To test the hypothesis that inflammatory responses to endotoxemia differ between healthy horses and horses with equine metabolic syndrome (EMS).
Animals—6 healthy horses and 6 horses with EMS.
Procedures—Each horse randomly received an IV infusion of lipopolysaccharide (20 ng/kg [in 60 mL of sterile saline {0.9% NaCl} solution]) or saline solution, followed by the other treatment after a 7-day washout period. Baseline data were obtained 30 minutes before each infusion. After infusion, a physical examination was performed hourly for 9 hours and at 15 and 21 hours; a whole blood sample was collected at 30, 60, 90, 120, 180, and 240 minutes for assessment of inflammatory cytokine gene expression. Liver biopsy was performed between 240 and 360 minutes after infusion.
Results—Following lipopolysaccharide infusion in healthy horses and horses with EMS, mean rectal temperature, heart rate, and respiratory rate increased, compared with baseline findings, as did whole blood gene expression of interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α. The magnitude of blood cytokine responses did not differ between groups, but increased expression of IL-6, IL-8, IL-10, and tumor necrosis factor-α persisted for longer periods in EMS-affected horses. Lipopolysaccharide infusion increased liver tissue gene expressions of IL-6 in healthy horses and IL-8 in both healthy and EMS-affected horses, but these gene expressions did not differ between groups.
Conclusions and Clinical Relevance—Results supported the hypothesis that EMS affects horses’ inflammatory responses to endotoxin by prolonging cytokine expression in circulating leukocytes. These findings are relevant to the association between obesity and laminitis in horses with EMS.
Abstract
Objective—To test the hypothesis that glucose and insulin dynamics during endotoxemia differ between healthy horses and horses with equine metabolic syndrome (EMS).
Animals—6 healthy adult mares and 6 horses with EMS.
Procedures—Each horse randomly received an IV infusion of lipopolysaccharide (20 ng/kg [in 60 mL of sterile saline {0.9% NaCl} solution]) or saline solution, followed by the other treatment after a 7-day washout period. Baseline insulin-modified frequently sampled IV glucose tolerance tests were performed 27 hours before and then repeated at 0.5 and 21 hours after infusion. Results were assessed via minimal model analysis and area under the curve values for plasma glucose and serum insulin concentrations.
Results—Lipopolysaccharide infusion decreased insulin sensitivity and increased area under the serum insulin concentration curve (treatment × time) in both healthy and EMS-affected horses, compared with findings following saline solution administration. The magnitude of increase in area under the plasma glucose curve following LPS administration was greater for the EMS-affected horses than it was for the healthy horses. Horses with EMS that received LPS or saline solution infusions had decreased insulin sensitivity over time.
Conclusions and Clinical Relevance—Glucose and insulin responses to endotoxemia differed between healthy horses and horses with EMS, with greater loss of glycemic control in EMS-affected horses. Horses with EMS also had greater derangements in glucose and insulin homeostasis that were potentially stress induced. It may therefore be helpful to avoid exposure of these horses to stressful situations.
Abstract
Objective—To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques.
Animals—8 llamas and 8 alpacas.
Procedures—Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout.
Results—Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species.
Conclusions and Clinical Relevance—New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.
Abstract
Objective—To evaluate 4 methods used to measure plasma insulin-like growth factor (IGF) 1 concentrations in healthy cats and cats with diabetes mellitus or other diseases.
Animals—39 healthy cats, 7 cats with diabetes mellitus, and 33 cats with other diseases.
Procedures—4 assays preceded by different sample preparation methods were evaluated, including acid chromatography followed by radioimmunoassay (AC-RIA), acid-ethanol extraction followed by immunoradiometry assay (AEE-IRMA), acidification followed by immunochemiluminescence assay (A-ICMA), and IGF-2 excess followed by RIA (IE-RIA). Validation of the methods included determination of precision, accuracy, and recovery. The concentration of IGF-1 was measured with all methods, and results were compared among cat groups.
Results—The intra-assay coefficient of variation was < 10% for AC-RIA, A-ICMA, and AEE-IRMA and 14% to 22% for IE-RIA. The linearity of dilution was close to 1 for each method. Recovery rates ranged from 69% to 119%. Five healthy cats had IGF-1 concentrations > 1,000 ng/mLwith the AEE-IRMA, but < 1,000 ng/mL with the other methods. Compared with healthy cats, hyperthyroid cats had significantly higher concentrations of IGF-1 with the A-ICMA method, but lower concentrations with the IE-RIA method. Cats with lymphoma had lower IGF-1 concentrations than did healthy cats regardless of the method used.
Conclusions and Clinical Relevance—Differences in the methodologies of assays for IGF-1 may explain, at least in part, the conflicting results previously reported in diabetic cats. Disorders such as hyperthyroidism and lymphoma affected IGF-1 concentrations, making interpretation of results more difficult if these conditions are present in cats with diabetes mellitus.
Abstract
Objective—To determine the effect of various UVB radiation sources on plasma 25-hydroxyvitamin D3 concentrations in Hermann's tortoises (Testudo hermanni).
Animals—18 healthy Hermann's tortoises.
Procedures—Tortoises were exposed to sunlight in an outdoor enclosure located in the natural geographic range of Hermann's tortoises (n = 6 tortoises) or a self-ballasted mercury-vapor lamp (6) or fluorescent UVB-emitting lamp (6) in an indoor enclosure for 35 days. Plasma samples were obtained from each tortoise on the first (day 0) and last (day 35) days of the study, and concentrations of 25-hydroxyvitamin D3 were determined. Amount of UVB radiation in enclosures was measured.
Results—Mean ± SD plasma 25-hydroxyvitamin D3 concentrations for tortoises exposed to the mercury-vapor and fluorescent lamps were significantly lower on day 35 (155.69 ± 80.71 nmol/L and 134.42 ± 51.42 nmol/L, respectively) than they were on day 0 (368.02 ± 119.34 nmol/L and 313.69 ± 109.54 nmol/L, respectively). Mean ± SD plasma 25-hydroxyvitamin D3 concentration for tortoises exposed to sunlight did not differ significantly between days 0 (387.74 ± 114.56 nmol/L) and 35 (411.51 ± 189.75 nmol/L). Mean day 35 plasma 25-hydroxyvitamin D3 concentration was significantly higher for tortoises exposed to sunlight versus those exposed to mercury-vapor or fluorescent lamps. Sunlight provided significantly more UVB radiation than did the mercury-vapor or fluorescent lamps.
Conclusions and Clinical Relevance—Plasma 25-hydroxyvitamin D3 concentrations differed between tortoises exposed to sunlight and those exposed to artificial UVB sources. Exposure to sunlight at a latitude similar to that of the natural geographic range is recommended for healthy and calcium-deficient tortoises.
Abstract
Objective—To evaluate a human radioimmunoassay (RIA) and equine and high-range porcine (hrp) species-specific ELISAs for the measurement of high serum insulin concentrations in ponies.
Samples—Serum samples from 12 healthy nonobese ponies (7 clinically normal and 5 laminitis prone; 13 to 26 years of age; 11 mares and 1 gelding) before and after glucose, insulin, and dexamethasone administration.
Procedures—Intra-and interassay repeatability, freeze-thaw stability, dilutional parallelism, and assay agreement were assessed.
Results—Assay detection limits were as follows: RIA, < 389 μU/mL; equine ELISA, < 175 μU/mL; and hrp ELISA, 293 to 8,775 μU/mL. Mean ± SD intra- and interassay repeatability were respectively as follows: RIA, 6.5 ± 5.1 % and 74 ± 3.4%; equine ELISA, 10.6 ± 11.0% and 9.0 ± 4.6%; and hrp ELISA, 19.9 ± 172% and 173 ± 16.6%. Freezing and thawing affected measured concentrations. Dilutional parallelism in the RIA was only evident when insulin-depleted equine serum was used as a diluent (percentage recovery, 95.7 ± 274%); in the ELISAs, dilutional parallelism was observed when a zero calibrator was used. Agreement between RIA and equine ELISA results was good for samples containing concentrations < 175 μU of insulin/mL (bias, −18.5 ± 25.5 μU/mL; higher in RIA). At higher concentrations, assay agreement was poor between RIA and equine ELISA results (bias, −185.3 ± 98.7 μU/mL) and between RIA and hrp ELISA results (bias, 25.3 ± 183.0 μU/mL).
Conclusions and Clinical Relevance—Agreement among results of the 3 assays was variable, and dilutional parallelism was only evident with the RIA when insulin-depleted equine serum was tested. Caution is recommended when evaluating high insulin concentrations measured with the RIA or ELISAs.
Abstract
Objective—To determine the influence of intensified training and subsequent reduced training on glucose metabolism rate and peripheral insulin sensitivity in horses and identify potential markers indicative of early overtraining.
Animals—12 Standardbred geldings.
Procedures—Horses underwent 4 phases of treadmill-based training. In phase 1, horses were habituated to the treadmill. In phase 2, endurance training was alternated with high-intensity exercise training. In phase 3, horses were divided into control and intensified training groups. In the intensified training group, training intensity, duration, and frequency were further increased via a protocol to induce overtraining; in the control group, these factors remained unaltered. In phase 4, training intensity was reduced. Standardized exercise tests were performed after each phase and hyperinsulinemic euglycemic clamp (HEC) tests were performed after phases 2, 3, and 4.
Results—10 of 12 horses completed the study. Dissociation between mean glucose metabolism rate and mean glucose metabolism rate-to-plasma insulin concentration ratio (M:I) was evident in the intensified training group during steady state of HEC testing after phases 3 and 4. After phase 4, mean glucose metabolism rate was significantly decreased (from 31.1 ± 6.8 μmol/kg/min to 18.1 ± 3.4 μmol/kg/min), as was M:I (from 1.05 ± 0.31 to 0.62 ± 0.17) during steady state in the intensified training group, compared with phase 3 values for the same horses.
Conclusions and Clinical Relevance—Dissociation between the glucose metabolism rate and M:I in horses that underwent intensified training may reflect non-insulin–dependent increases in glucose metabolism.
Abstract
Objective—To characterize adiponectin protein complexes in lean and obese horses.
Animals—26 lean horses and 18 obese horses.
Procedures—Body condition score (BCS) and serum insulin activity were measured for each horse. Denaturing and native western blot analyses were used to evaluate adiponectin complexes in serum. A human ELISA kit was validated and used to quantify high–molecular weight (HMW) complexes. Correlations between variables were made, and HMW values were compared between groups.
Results—Adiponectin was present as a multimer consisting of HMW (> 720-kDa), low-molecular weight (180-kDa), and trimeric (90-kDa) complexes in serum. All complexes were qualitatively reduced in obese horses versus lean horses, but the percentage of complexes < 250 kDa was higher in obese versus lean horses. High–molecular weight adiponectin concentration measured via ELISA was negatively correlated with serum insulin activity and BCS and was lower in obese horses (mean ± SD, 3.6 ± 3.9 μg/mL), compared with lean horses (8.0 ± 4.6 μg/mL).
Conclusions and Clinical Relevance—HMW adiponectin is measurable via ELISA, and concentration is negatively correlated with BCS and serum insulin activity in horses. A greater understanding of the role of adiponectin in equine metabolism will provide insight into the pathophysiology of metabolic disease conditions.