Browse
Abstract
OBJECTIVE
To examine changes occurring in normal pelvic suspensory ligaments (SLs) of horses after denervating these ligaments and to investigate the effect chronic inflammation might have on these changes.
ANIMALS
10 horses.
PROCEDURES
The SL of 1 randomly selected pelvic limb of each of 5 horses was injected with collagenase to induce desmitis, and 42 days later, the proximal aspect of both pelvic SLs were denervated. The SLs were harvested 120 days after being denervated, and the morphological and histological characteristics of each collagenase-injected, denervated SL were compared with those of the contralateral, non-injected, denervated SL. All denervated SLs were compared with non-denervated pelvic SLs harvested from 5 horses similar in weight and age.
RESULTS
The mean width and the cross-sectional area of the musculature of all denervated SLs were significantly less than that of the non-denervated ligaments. The mean thickness of collagenase-injected denervated ligaments, but not that of the non-injected denervated ligaments, was significantly less than that of the non-denervated ligaments. Histological abnormalities typical of neurogenic muscular atrophy were observed in all denervated ligaments.
CLINICAL RELEVANCE
Loss of motor neuronal input to the proximal aspect of the SL of the pelvic limb of horses causes neurogenic atrophy of the musculature in that portion of the ligament. Denervating a SL of a pelvic limb may weaken the ligament, increasing its risk of injury. Chronic inflammation of the SL before neurectomy may exacerbate atrophy of the musculature after neurectomy.
Abstract
OBJECTIVE
To investigate the chondroprotective effects of autologous platelet-rich plasma (PRP), ampicillin-sulbactam (AmpS), or PRP combined with AmpS (PRP+AmpS) in an in vitro chondrocyte explant model of bovine Staphylococcus aureus–induced septic arthritis.
SAMPLE
Autologous PRP and cartilage explants obtained from 6 healthy, adult, nonlactating Jersey-crossbred cows.
ProcedureS
Autologous PRP was prepared prior to euthanasia using an optimized double centrifugation protocol. Cartilage explants collected from grossly normal stifle joints were incubated in synovial fluid (SF) alone, S aureus–inoculated SF (SA), or SA supplemented with PRP (25% culture medium volume), AmpS (2 mg/mL), or both PRP (25% culture medium volume) and AmpS (2 mg/mL; PRP+AmpS) for 24 hours. The metabolic activity, percentage of dead cells, and glycosaminoglycan content of cartilage explants were measured with a resazurin-based assay, live-dead cell staining, and dimethylmethylene blue assay, respectively. Treatment effects were assessed relative to the findings for cartilage explants incubated in SF alone.
RESULTS
Application of PRP, AmpS, and PRP+AmpS treatments significantly reduced S aureus–induced chondrocyte death (ie, increased metabolic activity and cell viability staining) in cartilage explants, compared with untreated controls. There were no significant differences in chondrocyte death among explants treated with PRP, AmpS, or PRP+AmpS.
CLINICAL RELEVANCE
In this in vitro explant model of S aureus–induced septic arthritis, PRP, AmpS, and PRP+AmpS treatments mitigated chondrocyte death. Additional work to confirm the efficacy of PRP with bacteria commonly associated with clinical septic arthritis in cattle as well as in vivo evaluation is warranted.
Abstract
OBJECTIVE
To assess whether the combination of hyaluronan, sodium chondroitin sul-fate, and N-acetyl-d-glucosamine (HCSG) lubricates articular cartilage in vitro and modulates joint lubrication in vivo.
ANIMALS
16 healthy adult horses.
PROCEDURES
The effects of HCSG injections on SF lubricant properties and joint health, immediately after injury and 2 weeks later, were analyzed by use an equine osteochondral fracture model of post-traumatic osteoarthritis (OA). Middle carpal joints of adult horses were randomly assigned to 1 of 4 surgical treatment groups as follows: normal nonsurgical group (n = 8), normal sham-surgical group (8), OA-induced surgical group with HCSG injection (8), or OA-induced surgical group with saline (0.9% NaCl) solution injection (8). Synovial fluid was aspirated periodically and analyzed for boundary lubrication function and lubricant molecules. At 17 days, joints were screened for gross pathological changes.
RESULTS
Induction of OA led to an impairment of SF lubrication function and diminished hyaluronan concentration in a time-dependent manner following surgery, with HCSG injection lessening these effects. Certain friction coefficients approached those of unaffected normal equine SF. Induction of OA also caused synovial hemorrhage at 17 days, which was lower in joints treated with HCSG.
CONCLUSIONS AND CLINICAL RELEVANCE
After induction of OA, equine SF lubricant function was impaired. Hyaluronan-sodium chondroitin sulfate–N-acetyl-d-glucosamine injection restored lubricant properties at certain time points and reduced pathological joint changes.
Abstract
OBJECTIVE
To examine whether proximal sesamoid bone (PSB) articular cartilage and bone osteoarthritic changes or palmar osteochondral disease (POD) scores were associated with exercise history and catastrophic PSB fracture in Thoroughbred racehorses.
SAMPLE
PSBs from 16 Thoroughbred racehorses (8 with and 8 without PSB fracture).
PROCEDURES
Exercise history was collected, and total career high-speed furlongs was used as the measure of total exercise per horse. At necropsy, medial and lateral condyles of the third metacarpus from each forelimb were assigned a POD score, followed by imaging with micro-CT for evaluation of osteophyte size. Three investigators that were blinded to the type of PSB (fracture or no fracture) used the Osteoarthritis Research Society International (OARSI) scoring system to evaluate acellularity, chondrocyte necrosis, cartilage fibrillation, chondrone formation, safranin O stain uptake, and tidemark advancement of 1 central sagittal tissue section/PSB (4 PSBs/horse). Cartilage thickness and bone necrosis were scored on the basis of histologic examination.
RESULTS
POD score, osteophyte size score, percentage of bone necrosis, tidemark advancement, chondrone formation, and total OARSI score were greater in horses with more accrued total career high-speed furlongs. Scores for POD, osteophyte size, fibrillation, acellularity, chondrone formation, and total OARSI were greater for horses with PSB fracture.
CONCLUSIONS AND CLINICAL RELEVANCE
OARSI scoring revealed that more advanced osteoarthritic changes strongly correlated with total career high-speed furlongs and PSB fracture. However, the effect of exercise was dominant, suggesting that exercise history will be important to include in future models that aim to assess risk factors for catastrophic PSB fracture.
Abstract
OBJECTIVE
To investigate the in vitro effects of clinically relevant concentrations of the local anesthetics (LAs) bupivacaine, lidocaine, lidocaine with preservative (LP), mepivacaine, and ropivacaine on equine chondrocyte and fibroblast-like synoviocyte (FLS) viability.
SAMPLE
Chondrocytes and FLSs of the metacarpophalangeal joints of 4 healthy adult horses.
PROCEDURES
Viability of chondrocytes and FLSs was determined with 3 assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and trypan blue (TB) exclusion (only FLS). Viability was assessed after 30- and 60-minute exposures to 0.0625%, 0.125%, and 0.25% bupivacaine; 0.25%, 0.5%, and 1% lidocaine; 0.25%, 0.5%, and 1% LP; 0.25%, 0.5%, and 1% mepivacaine; and 0.125%, 0.25%, and 0.5% ropivacaine.
RESULTS
Viability of chondrocytes was significantly decreased with exposure to 0.25% bupivacaine, 1% lidocaine, 1% LP, 1% mepivacaine, and 0.25% ropivacaine. Viability of FLSs was significantly decreased with exposure to 0.25% bupivacaine, 1% mepivacaine, 1% LP, and 0.5% ropivacaine.
CONCLUSIONS AND CLINICAL RELEVANCE
Clinically relevant concentrations of LAs had in vitro time- and concentration-dependent cytotoxicity for chondrocytes and FLSs isolated from the metacarpophalangeal joints of healthy horses. Bupivacaine was more toxic to chondrocytes than lidocaine, mepivacaine, and ropivacaine, whereas bupivacaine, LP, mepivacaine, and ropivacaine were more toxic to FLSs than preservative-free lidocaine. Several LAs may negatively affect chondrocyte and FLS viability.
Abstract
OBJECTIVE
To determine whether luteinizing hormone receptors (LHRs) are expressed in canine femoral head subchondral bone (FHSB), hip joint round ligament (RL), cranial cruciate ligament (CCL), and femorotibial joint synovium (FJS) specimens.
SAMPLE
1 specimen each of the FHSB, RL, CCL, and FJS obtained from the left hind limbs of 19 fresh canine cadavers.
PROCEDURES
1 section of each FHSB, RL, CCL, and FJS specimen was processed with rabbit polyclonal IgG anti-human LHR antibody, and 1 section was treated with negative control reagents. Percentage immunoexpression of LHRs in FHSB and FJS sections was analyzed by assessment of 100 bone marrow cells or synoviocytes in 3 adjacent hpf (400×). In each RL and CCL section, immunoexpression of LHRs in fibrocytes was semiquantitatively analyzed on the basis of the mean of the product of percentage staining score (from 0 [no staining] to 3 [> 50% of cells stained]) and staining intensity score (from 0 [no staining] to 2 [moderate to strong staining]) for 3 adjacent hpf.
RESULTS
All tissues examined had variable LHR expression. Expression of LHRs in FHSB, CCL, or FJS specimens did not differ between sexes or between sexually intact and gonadectomized dogs. However, RL specimens from female dogs had significantly greater LHR expression scores, compared with findings for male dogs.
CONCLUSIONS AND CLINICAL RELEVANCE
Results indicated that LHRs are expressed in structural support tissues of canine hip and femorotibial joints. Further research is required to determine the LHRs' function, mechanism of action, and potential contribution to the pathogenesis of hip dysplasia or CCL rupture in dogs.
Abstract
OBJECTIVE
To compare the extent of inflammation and catabolic collagen response in the middle carpal joints (MCJs) of healthy horses following intra-articular injection of 2% lidocaine, 2% mepivacaine, lactated Ringer solution (LRS), or 0.1% methyl parahydroxybenzoate.
ANIMALS
17 adult horses.
PROCEDURES
In the first of 2 experiments, the left middle carpal joint (MCJ) of each of 12 horses was injected with 10 mL of 2% lidocaine (n = 3), 2% mepivacaine (3), or LRS (control; 6). After a 4-week washout period, the right MCJ of the horses that received lidocaine or mepivacaine was injected with 10 mL of LRS, and the right MCJ of horses that received LRS was injected with 10 mL of 2% lidocaine (n = 3) or 2% mepivacaine (3). In experiment 2, the left MCJ of each of 5 horses was injected with 10 mL of 0.1% methyl parahydroxybenzoate. After a 48-hour washout period, the right MCJ of each horse was injected with 10 mL of LRS. Synovial fluid (SF) samples were aseptically collected before and at predetermined times after each injection. Synovial fluid WBC count, neutrophil percentage, and total protein, neutrophil myeloperoxidase, neutrophil elastase, and Coll2-1 concentrations were compared among treatments.
RESULTS
Both lidocaine and mepivacaine induced SF changes indicative of inflammation and a catabolic collagen response, but the magnitude of those changes was more pronounced for lidocaine. Methyl parahydroxybenzoate did not cause any SF changes indicative of inflammation.
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that mepivacaine was safer than lidocaine for intra-articular injection in horses.
Abstract
OBJECTIVE
To evaluate agreement in results obtained with an MRI-based grading scheme and a macroscopic observation-based grading scheme when used to assess intervertebral disk (IVD) degeneration in cats.
SAMPLE
241 MRI and 143 macroscopic images of singular IVDs in 44 client-owned cats (40 cadaveric and 4 live).
PROCEDURES
Singular images of IVDs were obtained of live cats admitted for treatment of suspected neurologic disease (MRI images of IVDs) and of cadavers of cats euthanized for reasons unrelated to spinal disease (MRI and macroscopic images of IVDs) at the Small Animal Hospital, Vetsuisse Faculty, Zurich, Switzerland, between January 12, 2015, and October 19, 2015. The IVD images were randomized and evaluated twice by 4 observers for each grading scheme. Inter- and intraobserver reliability for the grading schemes was assessed with Cohen weighted κ analysis. Agreement and correlation between results obtained with the 2 grading schemes were determined with Cohen weighted κ and Spearman correlation coefficient (ρ) analyses, respectively.
RESULTS
Inter- and intraobserver agreement between results was substantial to almost perfect (mean weighted κ, 0.66 to 0.83 and 0.71 to 0.86, respectively) for the MRI-based grading scheme and moderate to substantial (mean weighted κ, 0.42 to 0.80 and 0.65 to 0.79, respectively) for the macroscopic observation-based grading scheme. Between the 2 grading schemes, agreement in results was moderate (mean ± SE weighted κ, 0.56 ± 0.05), and the correlation was strong (ρ = 0.73).
CONCLUSIONS AND CLINICAL RELEVANCE
Results indicated that the MRI-based and macroscopic observation-based grading schemes used in the present study could be used reliably for classifying IVD degeneration in cats.
Abstract
OBJECTIVE
To describe histologic changes in the temporomandibular joints (TMJs) of horses of various ages.
SAMPLE
22 TMJs from cadavers of 11 horses.
PROCEDURES
Horses were categorized into 3 age groups (group 1, 2 to 10 years old [n = 3]; group 2, 11 to 20 years old [3]; and group 3, > 20 years old [5]). Each TMJ was sectioned into 5-mm slices, preserved in formalin, decalcified in formic acid, and routinely processed for histologic analysis. Joints were systematically assessed by use of previously described methods. Multilevel mixed-effects models were used to examine the data.
RESULTS
The number of changes was significantly fewer and degree of changes was significantly less within the TMJs of group 1 horses, compared with those of group 3 horses. Comparison among groups revealed that the combination of temporal and mandibular scores for group 1 was significantly lower than for groups 2 or 3. Disk score did not differ significantly between groups 1 and 2, but disk scores of groups 1 and 2 were significantly lower than the disk score of group 3.
CONCLUSIONS AND CLINICAL RELEVANCE
The assessed lesions were associated with osteoarthritis, and they accumulated in the TMJs as horses aged. In the absence of signs of pain manifested as changes in mastication, behavior, or performance, it would be difficult to determine the point at which accrued pathological changes represented the onset of clinically important osteoarthritis of the TMJs.
Abstract
OBJECTIVE
To compare effects of platelet-rich plasma (PRP), interleukin-1 receptor antagonist protein (IRAP), autologous processed plasma (APP), and sodium hyaluronate treatments on synovial fluid cells in vitro and on synovial fluid obtained from osteochondrotic joints of horses.
SAMPLE
Synovial fluid cells from 8 healthy equine tibiotarsal joints (in vitro experiment) and synovial fluid samples from 40 tibiotarsal joints of 25 horses with osteochondrosis dissecans (in vivo experiment).
PROCEDURES
Effects of various treatments on concentrations of prostaglandin (PG) E2, interleukin (IL)-1β, tumor necrosis factor-α, IL-10, and IL-1 receptor antagonist (IL-1ra) were analyzed in cell medium supernatant, and production of reactive oxygen species was analyzed by use of flow cytometry. In an in vivo experiment, synovial fluid samples were collected before and 48 hours after arthroscopy and treatment administration (8 joints/treatment) and evaluated to determine concentrations of hyaluronic acid, chondroitin sulfate, PGE2, tumor necrosis factor-α, IL-1, IL-10, and IL-1ra.
RESULTS
All in vitro treatments reduced reactive oxygen species production, PRP increased PGE2 concentrations, and PRP, IRAP, and APP increased IL-1ra concentrations. Only IRAP and APP increased IL-1 concentrations. For the in vivo experiment, PRP increased and IRAP decreased PGE2 concentrations in synovial fluid after arthroscopy. All treatments increased IL-1ra concentrations, but only sodium hyaluronate resulted in a significant increase in concentration, compared with the concentration for untreated joints. Also, IRAP reduced hyaluronic acid breakdown in synovial fluid.
CONCLUSIONS AND CLINICAL RELEVANCE
PRP should be used with caution in the period immediately after arthroscopy and treatment of osteochondrotic joints of horses. All treatments had antioxidant effects. Sodium hyaluronate, APP, and IRAP might help ameliorate joint inflammation.