Browse

You are looking at 81 - 90 of 136 items for :

  • Pharmacology x
  • Refine by Access: All Content x
Clear All

Abstract

Objective—To establish practical doses and administration frequencies of fondaparinux for cats that would approximate human therapeutic peak and trough plasma anti–factor Xa activities for thromboprophylaxis (TP) and thrombosis treatment (TT) protocols.

Animals—6 healthy adult purpose-bred cats.

Procedures—Dosage protocols for TP and TT were selected on the basis of a single compartment pharmacokinetic model incorporating data from humans but modified to account for the higher body weight–normalized cardiac output of cats. Fondaparinux was administered at 0.06 mg/kg, SC, every 12 hours (TP) for 7 days in one session, and 0.20 mg/kg, SC, every 12 hours (TT) for 7 days in another, with a minimum of 1 week separating the sessions. Plasma anti–factor Xa activity was measured before fondaparinux administration (day 1) and at 2 (peak) and 12 (trough) hours after drug administration on days 1 and 7. Platelet aggregation and thromobelastographic (TEG) parameters were also measured 2 hours after drug administration on day 7.

Results—Peak plasma anti–factor Xa activities on day 7 for TP (median, 0.59 mg/L; range, 0.36 to 0.77 mg/L) and TT (median, 1.66 mg/L; range, 1.52 to 2.00 mg/L) protocols were within therapeutic ranges for humans. However, only the TP protocol achieved trough anti–factor Xa activity considered therapeutic in humans (median, 0.19 mg/L; range, 0.00 to 0.37 mg/L) on day 7. There were significant changes in the TEG parameters at peak for the TT protocol, suggesting a hypocoagulable state. No significant changes in platelet aggregation were evident for either protocol.

Conclusions and Clinical Relevance—A fondaparinux dosage of 0.06 or 0.20 mg/kg, SC, every 12 hours, was sufficient to achieve a peak plasma anti–factor Xa activity in cats that has been deemed therapeutic in humans. This study provided preliminary data necessary to perform fondaparinux dose-determination and clinical efficacy studies.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetics, efficacy, and adverse effects of topically administered selamectin in flea-infested rabbits.

Animals—18 healthy 5-month-old New Zealand White rabbits.

Procedures—On day 0, rabbits (n = 6/group) received topically applied selamectin at doses of 10 or 20 mg/kg or received no treatment. Each rabbit was infested with 50 fleas (Ctenocephalides felis) on days −1, 7, and 14. Live and dead flea counts were performed on days 2, 9, and 16, and treatment efficacy was calculated. Blood samples were collected prior to drug administration and at 6 and 12 hours and 1, 2, 3, 5, 7, 10, 14, 21, and 28 days after treatment for determination of plasma selamectin concentrations via high-performance liquid chromatography with mass spectrometry. Pharmacokinetic parameters were determined.

Results—On day 2, efficacy of selamectin against flea populations of rabbits in the 10 and 20 mg/kg treatment groups was 91.3% and 97.1%, respectively, but by day 9, these values decreased to 37.7% and 74.2%, respectively. Mean terminal half-life and maximum plasma concentrations of selamectin were 0.93 days and 91.7 ng/mL, respectively, for rabbits in the 10 mg/kg group and 0.97 days and 304.2 ng/mL, respectively, for rabbits in the 20 mg/kg group. No adverse effects were detected.

Conclusions and Clinical Relevance—Selamectin was rapidly absorbed transdermally and was rapidly eliminated in rabbits. Results suggested that topical administration at a dosage of 20 mg/kg every 7 days is efficacious for treatment of flea infestation in rabbits. Further studies are needed to assess long-term safety in rabbits following repeated applications.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize the bioavailability and pharmacokinetics of oral and injectable formulations of methadone after IV, oral, and intragastric administration in horses.

Animals—6 healthy adult horses.

Procedures—Horses received single doses (each 0.15 mg/kg) of an oral formulation of methadone hydrochloride orally or intragastrically or an injectable formulation of the drug orally, intragastrically, or IV (5 experimental treatments/horse; 2-week washout period between each experimental treatment). A blood sample was collected from each horse before and at predetermined time points over a 360-minute period after each administration of the drug to determine serum drug concentration by use of gas chromatography–mass spectrometry analysis and to estimate pharmacokinetic parameters by use of a noncompartmental model. Horses were monitored for adverse effects.

Results—In treated horses, serum methadone concentrations were equivalent to or higher than the effective concentration range reported for humans, without induction of adverse effects. Oral pharmacokinetics in horses included a short half-life (approx 1 hour), high total body clearance corrected for bioavailability (5 to 8 mL/min/kg), and small apparent volume of distribution corrected for bioavailability (0.6 to 0.9 L/kg). The bioavailability of methadone administered orally was approximately 3 times that associated with intragastric administration.

Conclusions and Clinical Relevance—Absorption of methadone in the small intestine in horses appeared to be limited owing to the low bioavailability after intragastric administration. Better understanding of drug disposition, including absorption, could lead to a more appropriate choice of administration route that would enhance analgesia and minimize adverse effects in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of dexmedetomidine administered as a short-duration IV infusion in isoflurane-anesthetized cats.

Animals—6 healthy adult domestic female cats.

Procedures—Dexmedetomidine hydrochloride was injected IV (10 μg/kg over 5 minutes [rate, 2 μg/kg/min]) in isoflurane-anesthetized cats. Blood samples were obtained immediately prior to and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240, and 480 minutes following the start of the IV infusion. Collected blood samples were transferred to tubes containing EDTA, immediately placed on ice, and then centrifuged at 3,901 × g for 10 minutes at 4°C. The plasma was harvested and stored at −20°C until analyzed. Plasma dexmedetomidine concentrations were determined by means of liquid chromatography–mass spectrometry. Dexmedetomidine plasma concentration-time data were fitted to compartmental models.

Results—A 2-compartment model with input in and elimination from the central compartment best described the disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats. Weighted mean ± SEM apparent volume of distribution of the central compartment and apparent volume of distribution at steady-state were 402 ± 47 mL/kg and 1,701 ± 200 mL/kg, respectively; clearance and terminal half-life (harmonic mean ± jackknife pseudo-SD) were 6.3 ± 2.8 mL/min/kg and 198 ± 75 minutes, respectively. The area under the plasma concentration curve and maximal plasma concentration were 1,061 ± 292 min•ng/mL and 17.6 ± 1.8 ng/mL, respectively.

Conclusions and Clinical Relevance—Disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats was characterized by a moderate clearance and a long terminal half-life.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate plasma disposition, concentration in the hair, and anthelmintic efficacy of eprinomectin after topical administration in donkeys.

Animals—12 donkeys naturally infected with strongyle nematodes.

Procedures—The pour-on formulation of eprinomectin approved for use in cattle was administered topically to donkeys at a dosage of 0.5 mg/kg. Heparinized blood samples and hair samples were collected at various times between 1 hour and 40 days after administration. Samples were analyzed via high-performance liquid chromatography with fluorescence detection. Fecal strongyle egg counts were performed by use of a modified McMaster technique before and at weekly intervals for 8 weeks after treatment.

Results—Plasma concentration and systemic availability of eprinomectin were relatively higher in donkeys, compared with values reported for other animal species. Concerning the anthelmintic efficacy against strongyle nematodes, eprinomectin was completely effective (100%) on days 7 and 14 and highly effective (> 99%) until the end of the study at 56 days after treatment. No abnormal clinical signs or adverse reactions were observed for any donkeys after treatment.

Conclusions and Clinical Relevance—Eprinomectin had excellent safety. The relatively high plasma concentration after topical administration could result in use of eprinomectin for the control and treatment of parasitic diseases in donkeys.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify and characterize cytochrome P450 enzymes (CYPs) responsible for the metabolism of racemic ketamine in 3 mammalian species in vitro by use of chemical inhibitors and antibodies.

Sample—Human, canine, and equine liver microsomes and human single CYP3A4 and CYP2C9 and their canine orthologs.

Procedures—Chemical inhibitors selective for human CYP enzymes and anti-CYP antibodies were incubated with racemic ketamine and liver microsomes or specific CYPs. Ketamine N-demethylation to norketamine was determined via enantioselective capillary electrophoresis.

Results—The general CYP inhibitor 1-aminobenzotriazole almost completely blocked ketamine metabolism in human and canine liver microsomes but not in equine microsomes. Chemical inhibition of norketamine formation was dependent on inhibitor concentration in most circumstances. For all 3 species, inhibitors of CYP3A4, CYP2A6, CYP2C19, CYP2B6, and CYP2C9 diminished N-demethylation of ketamine. Anti-CYP3A4, anti-CYP2C9, and anti-CYP2B6 antibodies also inhibited ketamine N-demethylation. Chemical inhibition was strongest with inhibitors of CYP2A6 and CYP2C19 in canine and equine microsomes and with the CYP3A4 inhibitor in human microsomes. No significant contribution of CYP2D6 to ketamine biotransformation was observed. Although the human CYP2C9 inhibitor blocked ketamine N-demethylation completely in the canine ortholog CYP2C21, a strong inhibition was also obtained by the chemical inhibitors of CYP2C19 and CYP2B6. Ketamine N-demethylation was stereoselective in single human CYP3A4 and canine CYP2C21 enzymes.

Conclusions and Clinical Relevance—Human-specific inhibitors of CYP2A6, CYP2C19, CYP3A4, CYP2B6, and CYP2C9 diminished ketamine N-demethylation in dogs and horses. To address drug-drug interactions in these animal species, investigations with single CYPs are needed.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the elimination pharmacokinetics of a single IM injection of a long-acting ceftiofur preparation (ceftiofur crystalline-free acid [CCFA]) in healthy adult helmeted guineafowl (Numida meleagris).

Animals—14 healthy adult guineafowl.

Procedures—1 dose of CCFA (10 mg/kg) was administered IM to each of the guineafowl. Blood samples were collected intermittently via jugular venipuncture over a 144-hour period. Concentrations of ceftiofur and all desfuroylceftiofur metabolites were measured in plasma via high-performance liquid chromatography.

Results—No adverse effects of drug administration or blood collection were observed in any bird. The minimal inhibitory concentration (MIC) for many bacterial pathogens of poultry and domestic ducks (1 μg/mL) was achieved by 1 hour after administration in most birds and by 2 hours in all birds. A maximum plasma concentration of 5.26 μg/mL was reached 19.3 hours after administration. Plasma concentrations remained higher than the MIC for at least 56 hours in all birds and for at least 72 hours in all but 2 birds. The harmonic mean ± pseudo-SD terminal half-life of ceftiofur was 29.0 ± 4.93 hours. The mean area under the curve was 306 ± 69.3 μg•h/mL, with a mean residence time of 52.0 ± 8.43 hours.

Conclusions and Clinical Relevance—A dosage of 10 mg of CCFA/kg, IM, every 72 hours in helmeted guineafowl should provide a sufficient plasma drug concentration to inhibit growth of bacteria with an MIC ≤ 1 μg/mL. Clinical use should ideally be based on bacterial culture and antimicrobial susceptibility data and awareness that use of CCFA in avian patients constitutes extralabel use of this product.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize pharmacokinetics and pharmacodynamics of detomidine gel administered sublingually in accordance with label instructions to establish appropriate withdrawal guidelines for horses before competition.

Animals—12 adult racehorses.

Procedures—Horses received a single sublingual administration of 0.04 mg of detomidine/kg. Blood samples were collected before and up to 72 hours after drug administration. Urine samples were collected for 5 days after detomidine administration. Plasma and urine samples were analyzed via liquid chromatography–mass spectrometry, and resulting data were analyzed by use of noncompartmental analysis. Chin-to-ground distance, heart rate and rhythm, glucose concentration, PCV, and plasma protein concentration were also assessed following detomidine administration.

Results—Mean ± SD terminal elimination half-life of detomidine was 1.5 ± 1 hours. Metabolite concentrations were below the limit of detection (0.02, 0.1, and 0.5 ng/mL for detomidine, carboxydetomidine, and hydroxydetomidine, respectively) in plasma by 24 hours. Concentrations of detomidine and its metabolites were below the limit of detection (0.05 ng/mL for detomidine and 0.10 ng/mL for carboxydetomidine and hydroxydetomidine) in urine by 3 days. All horses had various degrees of sedation after detomidine administration. Time of onset was ≤ 40 minutes, and duration of sedation was approximately 2 hours. Significant decreases, relative to values at time 0, were detected for chin-to-ground distance and heart rate. There was an increased incidence and exacerbation of preexisting atrioventricular blocks after detomidine administration.

Conclusions and Clinical Relevance—A 48-hour and 3-day withdrawal period for detection in plasma and urine samples, respectively, should be adopted for sublingual administration of detomidine gel.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics after oral administration of a single dose of ponazuril to healthy llamas.

Animals—6 healthy adult llamas.

Procedures—Ponazuril (20 mg/kg) was administered once orally to 6 llamas (day 0). Blood samples were obtained on days 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 21, 28, 35, 42, and 49. Serum ponazuril concentrations were determined by use of a validated reverse-phase high-performance liquid chromatography assay with UV absorbance detection. Pharmacokinetic parameters were derived by use of a standard noncompartmental pharmacokinetic analysis.

Results—Mean ± SD area under the serum concentration–time curve was 7,516 ± 2,750 h•mg/L, maximum serum ponazuril concentration was 23.6 ± 6.0 mg/L, and the elimination half-life was 135.5 ± 16.7 hours. Serum concentration of ponazuril peaked at 84 hours (range, 48 to 120 hours) after administration and gradually decreased but remained detectable for up to 35 days after administration. No adverse effects were observed during the study period.

Conclusions and Clinical Relevance—The rate and extent of absorption following oral administration of a single dose of ponazuril were sufficient to result in potentially effective concentrations, and the drug was tolerated well by llamas. At this dose, ponazuril resulted in serum concentrations that were high enough to be effective against various Apicomplexans on the basis of data for other species. The effective ponazuril concentration that will induce 50% inhibition of parasite growth for Eimeria macusaniensis in camelids is currently unknown.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of tramadol and its metabolites O-desmethyltramadol (ODT) and N-desmethyltramadol (NDT) in adult horses.

Animals—12 mixed-breed horses.

Procedures—Horses received tramadol IV (5 mg/kg, over 3 minutes) and orally (10 mg/kg) with a 6-day washout period in a randomized crossover design. Serum samples were collected over 48 hours. Serum tramadol, ODT, and NDT concentrations were measured via high-performance liquid chromatography and analyzed via noncompartmental analysis.

Results—Maximum mean ± SEM serum concentrations after IV administration for tramadol, ODT, and NDT were 5,027 ± 638 ng/mL, 0 ng/mL, and 73.7 ± 12.9 ng/mL, respectively. For tramadol, half-life, volume of distribution, area under the curve, and total body clearance after IV administration were 2.55 ± 0.88 hours, 4.02 ± 1.35 L/kg, 2,701 ± 275 h•ng/mL, and 30.1 ± 2.56 mL/min/kg, respectively. Maximal serum concentrations after oral administration for tramadol, ODT, and NDT were 238 ± 41.3 ng/mL, 86.8 ± 17.8 ng/mL, and 159 ± 20.4 ng/mL, respectively. After oral administration, half-life for tramadol, ODT, and NDT was 2.14 ± 0.50 hours, 1.01 ± 0.15 hours, and 2.62 ± 0.49 hours, respectively. Bioavailability of tramadol was 9.50 ± 1.28%. After oral administration, concentrations achieved minimum therapeutic ranges for humans for tramadol (> 100 ng/mL) and ODT (> 10 ng/mL) for 2.2 ± 0.46 hours and 2.04 ± 0.30 hours, respectively.

Conclusions and Clinical Relevance—Duration of analgesia after oral administration of tramadol might be < 3 hours in horses, with ODT and the parent compound contributing equally.

Full access
in American Journal of Veterinary Research